Nuprl Lemma : mul-commutes
∀[x:ℤ]. ∀[y:Top].  (x * y ~ y * x)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
multiply: n * m
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
false: False
, 
top: Top
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
sq_type: SQType(T)
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
has-value: (a)↓
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
int_subtype_base, 
subtype_base_sq, 
has-value_wf_base, 
is-exception_wf, 
int-mul-exception, 
exception-not-value, 
value-type-has-value, 
int-value-type, 
top_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
multiplyCommutative, 
hypothesisEquality, 
hypothesis, 
Error :inhabitedIsType, 
Error :universeIsType, 
intEquality, 
axiomSqEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
exceptionSqequal, 
axiomSqleEquality, 
multiplyExceptionCases, 
because_Cache, 
sqleReflexivity, 
independent_functionElimination, 
independent_isectElimination, 
cumulativity, 
isectElimination, 
instantiate, 
equalitySymmetry, 
equalityTransitivity, 
dependent_functionElimination, 
productElimination, 
lemma_by_obid, 
applyEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
sqequalRule, 
sqequalHypSubstitution, 
callbyvalueMultiply, 
divergentSqle, 
thin, 
sqleRule, 
sqequalSqle, 
introduction, 
isect_memberFormation
Latex:
\mforall{}[x:\mBbbZ{}].  \mforall{}[y:Top].    (x  *  y  \msim{}  y  *  x)
Date html generated:
2019_06_20-AM-11_22_04
Last ObjectModification:
2018_10_15-PM-03_04_51
Theory : arithmetic
Home
Index