Nuprl Lemma : iff_weakening_equal
∀[A,B:Type].  {A 
⇐⇒ B} supposing A = B ∈ Type
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
Lemmas referenced : 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
cut, 
introduction, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
independent_pairFormation, 
lambdaFormation, 
hyp_replacement, 
hypothesisEquality, 
equalitySymmetry, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
universeEquality
Latex:
\mforall{}[A,B:Type].    \{A  \mLeftarrow{}{}\mRightarrow{}  B\}  supposing  A  =  B
Date html generated:
2016_05_13-PM-03_07_21
Last ObjectModification:
2016_01_06-PM-05_28_39
Theory : core_2
Home
Index