Nuprl Lemma : iff_weakening_equal

[A,B:Type].  {A ⇐⇒ B} supposing B ∈ Type


Proof




Definitions occuring in Statement :  uimplies: supposing a uall: [x:A]. B[x] guard: {T} iff: ⇐⇒ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q rev_implies:  Q prop:
Lemmas referenced :  equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation cut introduction axiomEquality hypothesis thin rename independent_pairFormation lambdaFormation hyp_replacement hypothesisEquality equalitySymmetry instantiate lemma_by_obid sqequalHypSubstitution isectElimination universeEquality

Latex:
\mforall{}[A,B:Type].    \{A  \mLeftarrow{}{}\mRightarrow{}  B\}  supposing  A  =  B



Date html generated: 2016_05_13-PM-03_07_21
Last ObjectModification: 2016_01_06-PM-05_28_39

Theory : core_2


Home Index