Nuprl Lemma : le_weakening2

a,b:ℤ.  a ≤ supposing a < b


Proof




Definitions occuring in Statement :  less_than: a < b uimplies: supposing a le: A ≤ B all: x:A. B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) le: A ≤ B not: ¬A implies:  Q false: False uall: [x:A]. B[x] prop: or: P ∨ Q
Lemmas referenced :  le-iff-less-or-equal less_than'_wf less_than_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination sqequalRule independent_pairEquality lambdaEquality voidElimination isectElimination axiomEquality intEquality inlFormation

Latex:
\mforall{}a,b:\mBbbZ{}.    a  \mleq{}  b  supposing  a  <  b



Date html generated: 2016_05_13-PM-03_30_42
Last ObjectModification: 2015_12_26-AM-09_46_49

Theory : arithmetic


Home Index