Nuprl Lemma : map_wf
∀[A,B:Type]. ∀[f:A ⟶ B]. ∀[l:A List]. (map(f;l) ∈ B List)
Proof
Definitions occuring in Statement :
map: map(f;as)
,
list: T List
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
less_than: a < b
,
sq_type: SQType(T)
,
so_apply: x[s]
,
so_lambda: λ2x.t[x]
,
it: ⋅
,
nil: []
,
subtract: n - m
,
rev_implies: P
⇐ Q
,
iff: P
⇐⇒ Q
,
decidable: Dec(P)
,
true: True
,
less_than': less_than'(a;b)
,
not: ¬A
,
le: A ≤ B
,
and: P ∧ Q
,
uiff: uiff(P;Q)
,
sq_stable: SqStable(P)
,
squash: ↓T
,
so_apply: x[s1;s2]
,
so_lambda: λ2x y.t[x; y]
,
colength: colength(L)
,
cons: [a / b]
,
top: Top
,
or: P ∨ Q
,
subtype_rel: A ⊆r B
,
prop: ℙ
,
uimplies: b supposing a
,
guard: {T}
,
ge: i ≥ j
,
false: False
,
implies: P
⇒ Q
,
nat: ℕ
,
all: ∀x:A. B[x]
Lemmas referenced :
list_wf,
cons_wf,
map_cons_lemma,
int_subtype_base,
set_subtype_base,
subtype_base_sq,
add-swap,
minus-minus,
less-iff-le,
not-ge-2,
subtract_wf,
equal_wf,
le_wf,
add-commutes,
minus-one-mul-top,
minus-one-mul,
minus-add,
condition-implies-le,
not-le-2,
false_wf,
decidable__le,
le-add-cancel,
zero-add,
add-zero,
add-associates,
add_functionality_wrt_le,
le_antisymmetry_iff,
sq_stable__le,
spread_cons_lemma,
product_subtype_list,
nil_wf,
map_nil_lemma,
list-cases,
colength_wf_list,
nat_wf,
equal-wf-T-base,
less_than_wf,
ge_wf,
less_than_irreflexivity,
less_than_transitivity1,
nat_properties
Rules used in proof :
Error :universeIsType,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
because_Cache,
Error :functionIsType,
functionEquality,
Error :inhabitedIsType,
universeEquality,
Error :isect_memberFormation_alt,
sqequalRule,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
functionExtensionality,
instantiate,
intEquality,
minusEquality,
independent_pairFormation,
dependent_set_memberEquality,
addEquality,
imageElimination,
baseClosed,
imageMemberEquality,
applyLambdaEquality,
productElimination,
hypothesis_subsumption,
promote_hyp,
voidEquality,
unionElimination,
applyEquality,
cumulativity,
dependent_functionElimination,
lambdaEquality,
voidElimination,
independent_functionElimination,
independent_isectElimination,
natural_numberEquality,
intWeakElimination,
rename,
setElimination,
lambdaFormation
Latex:
\mforall{}[A,B:Type]. \mforall{}[f:A {}\mrightarrow{} B]. \mforall{}[l:A List]. (map(f;l) \mmember{} B List)
Date html generated:
2019_06_20-PM-00_38_53
Last ObjectModification:
2018_09_26-PM-02_05_44
Theory : list_0
Home
Index