Nuprl Lemma : map_wf

[A,B:Type]. ∀[f:A ⟶ B]. ∀[l:A List].  (map(f;l) ∈ List)


Proof




Definitions occuring in Statement :  map: map(f;as) list: List uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] less_than: a < b sq_type: SQType(T) so_apply: x[s] so_lambda: λ2x.t[x] it: nil: [] subtract: m rev_implies:  Q iff: ⇐⇒ Q decidable: Dec(P) true: True less_than': less_than'(a;b) not: ¬A le: A ≤ B and: P ∧ Q uiff: uiff(P;Q) sq_stable: SqStable(P) squash: T so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] colength: colength(L) cons: [a b] top: Top or: P ∨ Q subtype_rel: A ⊆B prop: uimplies: supposing a guard: {T} ge: i ≥  false: False implies:  Q nat: all: x:A. B[x]
Lemmas referenced :  list_wf cons_wf map_cons_lemma int_subtype_base set_subtype_base subtype_base_sq add-swap minus-minus less-iff-le not-ge-2 subtract_wf equal_wf le_wf add-commutes minus-one-mul-top minus-one-mul minus-add condition-implies-le not-le-2 false_wf decidable__le le-add-cancel zero-add add-zero add-associates add_functionality_wrt_le le_antisymmetry_iff sq_stable__le spread_cons_lemma product_subtype_list nil_wf map_nil_lemma list-cases colength_wf_list nat_wf equal-wf-T-base less_than_wf ge_wf less_than_irreflexivity less_than_transitivity1 nat_properties
Rules used in proof :  Error :universeIsType,  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache Error :functionIsType,  functionEquality Error :inhabitedIsType,  universeEquality Error :isect_memberFormation_alt,  sqequalRule axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality functionExtensionality instantiate intEquality minusEquality independent_pairFormation dependent_set_memberEquality addEquality imageElimination baseClosed imageMemberEquality applyLambdaEquality productElimination hypothesis_subsumption promote_hyp voidEquality unionElimination applyEquality cumulativity dependent_functionElimination lambdaEquality voidElimination independent_functionElimination independent_isectElimination natural_numberEquality intWeakElimination rename setElimination lambdaFormation

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[l:A  List].    (map(f;l)  \mmember{}  B  List)



Date html generated: 2019_06_20-PM-00_38_53
Last ObjectModification: 2018_09_26-PM-02_05_44

Theory : list_0


Home Index