Nuprl Lemma : le_antisymmetry_iff
∀[x,y:ℤ].  uiff(x = y ∈ ℤ;{(x ≤ y) ∧ (y ≤ x)})
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
le: A ≤ B
, 
and: P ∧ Q
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
Lemmas referenced : 
le_weakening, 
less_than'_wf, 
equal_wf, 
le_antisymmetry, 
and_wf, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
equalitySymmetry, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
because_Cache, 
isectElimination, 
axiomEquality, 
intEquality, 
independent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
voidElimination
Latex:
\mforall{}[x,y:\mBbbZ{}].    uiff(x  =  y;\{(x  \mleq{}  y)  \mwedge{}  (y  \mleq{}  x)\})
Date html generated:
2016_05_13-PM-03_30_47
Last ObjectModification:
2015_12_26-AM-09_46_32
Theory : arithmetic
Home
Index