Nuprl Lemma : le_antisymmetry
∀[x,y:ℤ].  ((x ≤ y) 
⇒ (y ≤ x) 
⇒ (x = y ∈ ℤ))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
implies: P 
⇒ Q
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
prop: ℙ
, 
less_than: a < b
, 
squash: ↓T
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
false: False
Lemmas referenced : 
less-trichotomy, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
unionElimination, 
hypothesis, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
axiomEquality, 
intEquality, 
isect_memberEquality, 
because_Cache, 
imageElimination, 
productElimination, 
independent_functionElimination, 
voidElimination
Latex:
\mforall{}[x,y:\mBbbZ{}].    ((x  \mleq{}  y)  {}\mRightarrow{}  (y  \mleq{}  x)  {}\mRightarrow{}  (x  =  y))
Date html generated:
2019_06_20-AM-11_22_40
Last ObjectModification:
2018_08_17-AM-11_26_10
Theory : arithmetic
Home
Index