Nuprl Lemma : le_antisymmetry

[x,y:ℤ].  ((x ≤ y)  (y ≤ x)  (x y ∈ ℤ))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] le: A ≤ B implies:  Q int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] or: P ∨ Q prop: less_than: a < b squash: T le: A ≤ B and: P ∧ Q not: ¬A false: False
Lemmas referenced :  less-trichotomy le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality unionElimination hypothesis isectElimination sqequalRule lambdaEquality axiomEquality intEquality isect_memberEquality because_Cache imageElimination productElimination independent_functionElimination voidElimination

Latex:
\mforall{}[x,y:\mBbbZ{}].    ((x  \mleq{}  y)  {}\mRightarrow{}  (y  \mleq{}  x)  {}\mRightarrow{}  (x  =  y))



Date html generated: 2019_06_20-AM-11_22_40
Last ObjectModification: 2018_08_17-AM-11_26_10

Theory : arithmetic


Home Index