Nuprl Lemma : map_cons_lemma

b,a,f:Top.  (map(f;[a b]) [f map(f;b)])


Proof




Definitions occuring in Statement :  map: map(f;as) cons: [a b] top: Top all: x:A. B[x] apply: a sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T map: map(f;as) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  top_wf list_ind_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}b,a,f:Top.    (map(f;[a  /  b])  \msim{}  [f  a  /  map(f;b)])



Date html generated: 2016_05_14-AM-06_28_25
Last ObjectModification: 2015_12_26-PM-00_40_51

Theory : list_0


Home Index