Nuprl Lemma : colength_wf_list

[T:Type]. ∀[L:T List].  (colength(L) ∈ ℕ)


Proof




Definitions occuring in Statement :  list: List colength: colength(L) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T list: List uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  termination nat_wf set-value-type le_wf int-value-type colength_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename lemma_by_obid isectElimination hypothesis independent_isectElimination sqequalRule intEquality lambdaEquality natural_numberEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    (colength(L)  \mmember{}  \mBbbN{})



Date html generated: 2016_05_14-AM-06_25_41
Last ObjectModification: 2015_12_26-PM-00_42_24

Theory : list_0


Home Index