Nuprl Lemma : not-equal-implies-less
∀[T:Type]. ∀x,y:T. ((¬(x = y ∈ T))
⇒ (x < y ∨ y < x)) supposing T ⊆r ℤ
Proof
Definitions occuring in Statement :
less_than: a < b
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
not: ¬A
,
implies: P
⇒ Q
,
or: P ∨ Q
,
int: ℤ
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
uimplies: b supposing a
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
not: ¬A
,
sq_type: SQType(T)
,
guard: {T}
,
false: False
,
prop: ℙ
,
decidable: Dec(P)
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
uiff: uiff(P;Q)
,
top: Top
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
true: True
Lemmas referenced :
subtype_base_sq,
int_subtype_base,
equal_wf,
not_wf,
subtype_rel_wf,
decidable__lt,
less_than_wf,
false_wf,
not-lt-2,
not-equal-2,
add_functionality_wrt_le,
add-swap,
add-commutes,
le-add-cancel,
or_wf,
equal-wf-base
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
cut,
introduction,
sqequalRule,
axiomEquality,
hypothesis,
thin,
rename,
lambdaFormation,
sqequalHypSubstitution,
independent_functionElimination,
instantiate,
extract_by_obid,
isectElimination,
cumulativity,
intEquality,
independent_isectElimination,
dependent_functionElimination,
equalityTransitivity,
equalitySymmetry,
hypothesisEquality,
voidElimination,
applyEquality,
because_Cache,
universeEquality,
unionElimination,
inlFormation,
independent_pairFormation,
productElimination,
inrFormation,
addEquality,
natural_numberEquality,
lambdaEquality,
isect_memberEquality,
voidEquality,
addLevel,
orFunctionality
Latex:
\mforall{}[T:Type]. \mforall{}x,y:T. ((\mneg{}(x = y)) {}\mRightarrow{} (x < y \mvee{} y < x)) supposing T \msubseteq{}r \mBbbZ{}
Date html generated:
2017_04_14-AM-07_16_36
Last ObjectModification:
2017_02_27-PM-02_51_34
Theory : arithmetic
Home
Index