Nuprl Lemma : not-equal-2

x,y:ℤ.  uiff(¬(x y ∈ ℤ);((1 x) ≤ y) ∨ ((1 y) ≤ x))


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) le: A ≤ B all: x:A. B[x] not: ¬A or: P ∨ Q add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T not: ¬A implies:  Q false: False uall: [x:A]. B[x] subtype_rel: A ⊆B prop: or: P ∨ Q guard: {T} sq_type: SQType(T) le: A ≤ B less_than': less_than'(a;b) true: True
Lemmas referenced :  equal-wf-base int_subtype_base not_wf or_wf le_wf less-iff-le less_than_wf less-trichotomy subtype_base_sq le-add-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality voidElimination extract_by_obid isectElimination intEquality applyEquality hypothesis rename because_Cache addEquality natural_numberEquality addLevel orFunctionality productElimination independent_isectElimination unionElimination inlFormation inrFormation independent_functionElimination instantiate cumulativity

Latex:
\mforall{}x,y:\mBbbZ{}.    uiff(\mneg{}(x  =  y);((1  +  x)  \mleq{}  y)  \mvee{}  ((1  +  y)  \mleq{}  x))



Date html generated: 2019_06_20-AM-11_23_05
Last ObjectModification: 2018_08_17-AM-11_33_25

Theory : arithmetic


Home Index