Nuprl Lemma : not-equal-2
∀x,y:ℤ.  uiff(¬(x = y ∈ ℤ);((1 + x) ≤ y) ∨ ((1 + y) ≤ x))
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q)
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
or: P ∨ Q
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
or: P ∨ Q
, 
guard: {T}
, 
sq_type: SQType(T)
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
equal-wf-base, 
int_subtype_base, 
not_wf, 
or_wf, 
le_wf, 
less-iff-le, 
less_than_wf, 
less-trichotomy, 
subtype_base_sq, 
le-add-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
voidElimination, 
extract_by_obid, 
isectElimination, 
intEquality, 
applyEquality, 
hypothesis, 
rename, 
because_Cache, 
addEquality, 
natural_numberEquality, 
addLevel, 
orFunctionality, 
productElimination, 
independent_isectElimination, 
unionElimination, 
inlFormation, 
inrFormation, 
independent_functionElimination, 
instantiate, 
cumulativity
Latex:
\mforall{}x,y:\mBbbZ{}.    uiff(\mneg{}(x  =  y);((1  +  x)  \mleq{}  y)  \mvee{}  ((1  +  y)  \mleq{}  x))
Date html generated:
2019_06_20-AM-11_23_05
Last ObjectModification:
2018_08_17-AM-11_33_25
Theory : arithmetic
Home
Index