Nuprl Lemma : omega-shadow

a,b:ℕ+. ∀c,d,x:ℤ.  ((c ≤ (a x))  ((b x) ≤ d)  ((b c) ≤ (a d)))


Proof




Definitions occuring in Statement :  nat_plus: + le: A ≤ B all: x:A. B[x] implies:  Q multiply: m int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T nat_plus: + subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False prop: subtract: m top: Top less_than': less_than'(a;b) true: True
Lemmas referenced :  nat_plus_wf le_wf le-add-cancel add-associates add_functionality_wrt_le add-commutes add-swap minus-add minus-one-mul-top mul-swap minus-one-mul condition-implies-le not-le-2 false_wf decidable__le int_subtype_base less_than_wf set_subtype_base multiply-is-int-iff nat_plus_subtype_nat mul_preserves_le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality multiplyEquality setElimination rename applyEquality hypothesis sqequalRule independent_isectElimination because_Cache productElimination baseApply closedConclusion baseClosed intEquality lambdaEquality natural_numberEquality dependent_functionElimination unionElimination independent_pairFormation voidElimination independent_functionElimination isect_memberEquality voidEquality addEquality minusEquality

Latex:
\mforall{}a,b:\mBbbN{}\msupplus{}.  \mforall{}c,d,x:\mBbbZ{}.    ((c  \mleq{}  (a  *  x))  {}\mRightarrow{}  ((b  *  x)  \mleq{}  d)  {}\mRightarrow{}  ((b  *  c)  \mleq{}  (a  *  d)))



Date html generated: 2016_05_13-PM-03_32_21
Last ObjectModification: 2016_01_14-PM-06_41_13

Theory : arithmetic


Home Index