Nuprl Lemma : omega-shadow
∀a,b:ℕ+. ∀c,d,x:ℤ.  ((c ≤ (a * x)) 
⇒ ((b * x) ≤ d) 
⇒ ((b * c) ≤ (a * d)))
Proof
Definitions occuring in Statement : 
nat_plus: ℕ+
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
multiply: n * m
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
prop: ℙ
, 
subtract: n - m
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
nat_plus_wf, 
le_wf, 
le-add-cancel, 
add-associates, 
add_functionality_wrt_le, 
add-commutes, 
add-swap, 
minus-add, 
minus-one-mul-top, 
mul-swap, 
minus-one-mul, 
condition-implies-le, 
not-le-2, 
false_wf, 
decidable__le, 
int_subtype_base, 
less_than_wf, 
set_subtype_base, 
multiply-is-int-iff, 
nat_plus_subtype_nat, 
mul_preserves_le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
multiplyEquality, 
setElimination, 
rename, 
applyEquality, 
hypothesis, 
sqequalRule, 
independent_isectElimination, 
because_Cache, 
productElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
intEquality, 
lambdaEquality, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_pairFormation, 
voidElimination, 
independent_functionElimination, 
isect_memberEquality, 
voidEquality, 
addEquality, 
minusEquality
Latex:
\mforall{}a,b:\mBbbN{}\msupplus{}.  \mforall{}c,d,x:\mBbbZ{}.    ((c  \mleq{}  (a  *  x))  {}\mRightarrow{}  ((b  *  x)  \mleq{}  d)  {}\mRightarrow{}  ((b  *  c)  \mleq{}  (a  *  d)))
Date html generated:
2016_05_13-PM-03_32_21
Last ObjectModification:
2016_01_14-PM-06_41_13
Theory : arithmetic
Home
Index