Nuprl Lemma : mul_preserves_le

[a,b:ℤ]. ∀[n:ℕ].  (n a) ≤ (n b) supposing a ≤ b


Proof




Definitions occuring in Statement :  nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B multiply: m int:
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] nat: prop: uimplies: supposing a le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False all: x:A. B[x] uiff: uiff(P;Q) ge: i ≥  or: P ∨ Q subtype_rel: A ⊆B guard: {T} top: Top sq_type: SQType(T) less_than': less_than'(a;b)
Lemmas referenced :  less_than'_wf le_wf nat_wf nat_properties le-iff-less-or-equal equal-wf-base int_subtype_base less_than_wf add_functionality_wrt_lt le_reflexive minus-one-mul add-mul-special add-commutes zero-mul mul_positive minus-one-mul-top mul-distributes add-associates mul-commutes mul-swap zero-add subtype_base_sq false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin multiplyEquality setElimination rename hypothesisEquality hypothesis because_Cache intEquality isect_memberFormation sqequalRule productElimination independent_pairEquality lambdaEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination natural_numberEquality independent_isectElimination unionElimination inlFormation baseApply closedConclusion baseClosed applyEquality inrFormation minusEquality voidEquality addEquality independent_functionElimination instantiate cumulativity independent_pairFormation lambdaFormation

Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].    (n  *  a)  \mleq{}  (n  *  b)  supposing  a  \mleq{}  b



Date html generated: 2019_06_20-AM-11_23_18
Last ObjectModification: 2018_08_17-PM-00_10_56

Theory : arithmetic


Home Index