Nuprl Lemma : mul_preserves_le
∀[a,b:ℤ]. ∀[n:ℕ].  (n * a) ≤ (n * b) supposing a ≤ b
Proof
Definitions occuring in Statement : 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
multiply: n * m, 
int: ℤ
Definitions unfolded in proof : 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
prop: ℙ, 
uimplies: b supposing a, 
le: A ≤ B, 
and: P ∧ Q, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
all: ∀x:A. B[x], 
uiff: uiff(P;Q), 
ge: i ≥ j , 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
guard: {T}, 
top: Top, 
sq_type: SQType(T), 
less_than': less_than'(a;b)
Lemmas referenced : 
less_than'_wf, 
le_wf, 
nat_wf, 
nat_properties, 
le-iff-less-or-equal, 
equal-wf-base, 
int_subtype_base, 
less_than_wf, 
add_functionality_wrt_lt, 
le_reflexive, 
minus-one-mul, 
add-mul-special, 
add-commutes, 
zero-mul, 
mul_positive, 
minus-one-mul-top, 
mul-distributes, 
add-associates, 
mul-commutes, 
mul-swap, 
zero-add, 
subtype_base_sq, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
multiplyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
intEquality, 
isect_memberFormation, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination, 
natural_numberEquality, 
independent_isectElimination, 
unionElimination, 
inlFormation, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
inrFormation, 
minusEquality, 
voidEquality, 
addEquality, 
independent_functionElimination, 
instantiate, 
cumulativity, 
independent_pairFormation, 
lambdaFormation
Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].    (n  *  a)  \mleq{}  (n  *  b)  supposing  a  \mleq{}  b
Date html generated:
2019_06_20-AM-11_23_18
Last ObjectModification:
2018_08_17-PM-00_10_56
Theory : arithmetic
Home
Index