Nuprl Lemma : mul-swap
∀[x:ℤ]. ∀[y,z:Top].  (x * y * z ~ y * x * z)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
multiply: n * m
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
Lemmas referenced : 
mul-associates, 
mul-commutes, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesisEquality, 
hypothesis, 
sqequalAxiom, 
because_Cache, 
intEquality
Latex:
\mforall{}[x:\mBbbZ{}].  \mforall{}[y,z:Top].    (x  *  y  *  z  \msim{}  y  *  x  *  z)
Date html generated:
2016_05_13-PM-03_29_11
Last ObjectModification:
2015_12_26-AM-09_47_56
Theory : arithmetic
Home
Index