Nuprl Lemma : le_reflexive
∀a:ℤ. (a ≤ a)
Proof
Definitions occuring in Statement : 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
Lemmas referenced : 
le_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
intEquality, 
hypothesisEquality, 
because_Cache, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
independent_isectElimination, 
hypothesis
Latex:
\mforall{}a:\mBbbZ{}.  (a  \mleq{}  a)
Date html generated:
2016_05_13-PM-03_30_39
Last ObjectModification:
2015_12_26-AM-09_46_58
Theory : arithmetic
Home
Index