Nuprl Lemma : nat_plus_subtype_nat

+ ⊆r ℕ


Proof




Definitions occuring in Statement :  nat_plus: + nat: subtype_rel: A ⊆B
Definitions unfolded in proof :  nat_plus: + nat: uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a subtype_rel: A ⊆B prop: all: x:A. B[x] implies:  Q guard: {T}
Lemmas referenced :  subtype_rel_sets less_than_wf le_wf le_weakening2
Rules used in proof :  sqequalSubstitution sqequalRule sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality because_Cache lambdaEquality natural_numberEquality hypothesisEquality hypothesis independent_isectElimination setElimination rename setEquality lambdaFormation dependent_functionElimination

Latex:
\mBbbN{}\msupplus{}  \msubseteq{}r  \mBbbN{}



Date html generated: 2016_05_13-PM-03_32_14
Last ObjectModification: 2015_12_26-AM-09_45_32

Theory : arithmetic


Home Index