Nuprl Lemma : mul_ipoly_wf

[p,q:iPolynomial()].  (mul_ipoly(p;q) ∈ iPolynomial())


Proof




Definitions occuring in Statement :  mul_ipoly: mul_ipoly(p;q) iPolynomial: iPolynomial() uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iPolynomial: iPolynomial()
Lemmas referenced :  mul_poly-sq mul-ipoly_wf iPolynomial_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis

Latex:
\mforall{}[p,q:iPolynomial()].    (mul\_ipoly(p;q)  \mmember{}  iPolynomial())



Date html generated: 2017_09_29-PM-05_53_50
Last ObjectModification: 2017_05_04-PM-03_45_33

Theory : omega


Home Index