Nuprl Lemma : mul-ipoly_wf
∀[p,q:iPolynomial()]. (mul-ipoly(p;q) ∈ iPolynomial())
Proof
Definitions occuring in Statement :
mul-ipoly: mul-ipoly(p;q)
,
iPolynomial: iPolynomial()
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
nil: []
,
select: L[n]
,
assert: ↑b
,
bnot: ¬bb
,
sq_type: SQType(T)
,
it: ⋅
,
unit: Unit
,
bool: 𝔹
,
less_than: a < b
,
nat: ℕ
,
exists: ∃x:A. B[x]
,
true: True
,
less_than': less_than'(a;b)
,
subtype_rel: A ⊆r B
,
subtract: n - m
,
false: False
,
rev_implies: P
⇐ Q
,
not: ¬A
,
iff: P
⇐⇒ Q
,
decidable: Dec(P)
,
le: A ≤ B
,
uiff: uiff(P;Q)
,
bfalse: ff
,
so_apply: x[s1;s2]
,
so_lambda: λ2x y.t[x; y]
,
top: Top
,
cons: [a / b]
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
or: P ∨ Q
,
has-valueall: has-valueall(a)
,
has-value: (a)↓
,
callbyvalueall: callbyvalueall,
int_nzero: ℤ-o
,
prop: ℙ
,
iMonomial: iMonomial()
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
guard: {T}
,
squash: ↓T
,
and: P ∧ Q
,
lelt: i ≤ j < k
,
implies: P
⇒ Q
,
sq_stable: SqStable(P)
,
int_seg: {i..j-}
,
so_lambda: λ2x.t[x]
,
iPolynomial: iPolynomial()
,
uimplies: b supposing a
,
mul-ipoly: mul-ipoly(p;q)
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
less_than_irreflexivity,
less_than_transitivity1,
base_wf,
stuck-spread,
length_of_nil_lemma,
mul-mono-poly_wf,
list_accum_wf,
equal-wf-T-base,
assert-bnot,
bool_subtype_base,
subtype_base_sq,
bool_cases_sqequal,
eqff_to_assert,
assert_of_null,
eqtt_to_assert,
bool_wf,
null_wf,
nat_properties,
int_seg_properties,
add-subtract-cancel,
le-add-cancel,
not-lt-2,
decidable__lt,
select-cons-tl,
true_wf,
squash_wf,
add-swap,
lelt_wf,
equal_wf,
int_subtype_base,
le_wf,
set_subtype_base,
nat_wf,
length_wf_nat,
non_neg_length,
length_of_cons_lemma,
le-add-cancel2,
add-zero,
add_functionality_wrt_le,
add-commutes,
zero-add,
minus-one-mul-top,
add-associates,
minus-one-mul,
minus-add,
condition-implies-le,
not-le-2,
false_wf,
subtract_wf,
decidable__le,
cons_wf,
add-member-int_seg2,
nil_wf,
spread_cons_lemma,
null_cons_lemma,
product_subtype_list,
null_nil_lemma,
list-cases,
evalall-reduce,
int-valueall-type,
nequal_wf,
subtype_rel_self,
sorted_wf,
int_nzero_wf,
product-valueall-type,
list-valueall-type,
le_weakening2,
less_than_transitivity2,
sq_stable__le,
select_wf,
imonomial-less_wf,
length_wf,
int_seg_wf,
all_wf,
iMonomial_wf,
list_wf,
set-valueall-type,
iPolynomial_wf,
valueall-type-has-valueall
Rules used in proof :
cumulativity,
instantiate,
equalityElimination,
hyp_replacement,
sqequalIntensionalEquality,
dependent_pairFormation,
applyEquality,
minusEquality,
addEquality,
independent_pairFormation,
dependent_set_memberEquality,
equalitySymmetry,
equalityTransitivity,
axiomEquality,
voidEquality,
voidElimination,
isect_memberEquality,
hypothesis_subsumption,
promote_hyp,
unionElimination,
callbyvalueReduce,
lambdaFormation,
intEquality,
setEquality,
dependent_functionElimination,
imageElimination,
baseClosed,
imageMemberEquality,
productElimination,
independent_functionElimination,
rename,
setElimination,
because_Cache,
hypothesisEquality,
natural_numberEquality,
lambdaEquality,
independent_isectElimination,
hypothesis,
thin,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
sqequalRule,
cut,
introduction,
isect_memberFormation,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}[p,q:iPolynomial()]. (mul-ipoly(p;q) \mmember{} iPolynomial())
Date html generated:
2017_04_14-AM-08_59_23
Last ObjectModification:
2017_04_12-PM-05_21_56
Theory : omega
Home
Index