Nuprl Lemma : evalall-reduce

[T:Type]. ∀[t:T].  evalall(t) supposing valueall-type(T)


Proof




Definitions occuring in Statement :  valueall-type: valueall-type(T) evalall: evalall(t) uimplies: supposing a uall: [x:A]. B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a valueall-type: valueall-type(T) iff: ⇐⇒ Q and: P ∧ Q implies:  Q rev_implies:  Q squash: T
Lemmas referenced :  evalall-sqequal valueall-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution pointwiseFunctionality extract_by_obid isectElimination thin hypothesisEquality independent_isectElimination hypothesis equalityTransitivity equalitySymmetry because_Cache sqequalRule sqequalExtensionalEquality independent_pairFormation Error :lambdaFormation_alt,  Error :universeIsType,  sqequalIntensionalEquality imageMemberEquality baseClosed axiomSqEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :inhabitedIsType,  universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[t:T].    evalall(t)  \msim{}  t  supposing  valueall-type(T)



Date html generated: 2019_06_20-PM-00_26_50
Last ObjectModification: 2018_10_15-PM-00_48_54

Theory : fun_1


Home Index