Nuprl Lemma : evalall-sqequal

[x:Base]. evalall(x) supposing (evalall(x))↓


Proof




Definitions occuring in Statement :  has-value: (a)↓ evalall: evalall(t) uimplies: supposing a uall: [x:A]. B[x] base: Base sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a evalall: evalall(t) all: x:A. B[x] implies:  Q and: P ∧ Q subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] prop: false: False ge: i ≥  guard: {T} has-value: (a)↓ top: Top not: ¬A nat_plus: + sq_type: SQType(T) or: P ∨ Q cand: c∧ B outl: outl(x) outr: outr(x)
Lemmas referenced :  has-value_wf_base set_subtype_base le_wf int_subtype_base base_wf nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf fun_exp0_lemma istype-void strictness-apply bottom_diverge subtract-1-ge-0 nat_wf fun_exp_unroll_1 subtype_base_sq subtype_rel_self has-value-implies-dec-ispair-2 top_wf has-value-implies-dec-isinl-2 has-value-implies-dec-isinr-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution sqequalRule hypothesis compactness thin baseClosed Error :inhabitedIsType,  Error :lambdaFormation_alt,  axiomSqEquality dependent_functionElimination hypothesisEquality independent_functionElimination productElimination Error :universeIsType,  extract_by_obid isectElimination baseApply closedConclusion applyEquality intEquality Error :lambdaEquality_alt,  natural_numberEquality independent_isectElimination Error :equalityIsType1,  equalityTransitivity equalitySymmetry Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  setElimination rename intWeakElimination voidElimination independent_pairEquality axiomSqleEquality Error :functionIsTypeImplies,  because_Cache Error :dependent_set_memberEquality_alt,  instantiate cumulativity promote_hyp callbyvalueCallbyvalue callbyvalueReduce unionElimination independent_pairFormation

Latex:
\mforall{}[x:Base].  evalall(x)  \msim{}  x  supposing  (evalall(x))\mdownarrow{}



Date html generated: 2019_06_20-PM-00_26_48
Last ObjectModification: 2018_10_15-PM-05_16_30

Theory : fun_1


Home Index