Nuprl Lemma : fun_exp_unroll_1

[n:ℕ+]. ∀[f:Top].  (f^n ~ λx.(f (f^n x)))


Proof




Definitions occuring in Statement :  fun_exp: f^n nat_plus: + uall: [x:A]. B[x] top: Top apply: a lambda: λx.A[x] subtract: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B nat_plus: + all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  false: False guard: {T} bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b compose: g
Lemmas referenced :  fun_exp_unroll nat_plus_subtype_nat top_wf nat_plus_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int less_than_transitivity1 le_weakening less_than_irreflexivity eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule sqequalAxiom setElimination rename natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination dependent_functionElimination independent_functionElimination voidElimination dependent_pairFormation promote_hyp instantiate cumulativity because_Cache

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[f:Top].    (f\^{}n  \msim{}  \mlambda{}x.(f  (f\^{}n  -  1  x)))



Date html generated: 2017_04_14-AM-07_34_21
Last ObjectModification: 2017_02_27-PM-03_07_29

Theory : fun_1


Home Index