Nuprl Lemma : fun_exp_unroll_1
∀[n:ℕ+]. ∀[f:Top].  (f^n ~ λx.(f (f^n - 1 x)))
Proof
Definitions occuring in Statement : 
fun_exp: f^n
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
lambda: λx.A[x]
, 
subtract: n - m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
false: False
, 
guard: {T}
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
compose: f o g
Lemmas referenced : 
fun_exp_unroll, 
nat_plus_subtype_nat, 
top_wf, 
nat_plus_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
less_than_transitivity1, 
le_weakening, 
less_than_irreflexivity, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
sqequalAxiom, 
setElimination, 
rename, 
natural_numberEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
voidElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
because_Cache
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[f:Top].    (f\^{}n  \msim{}  \mlambda{}x.(f  (f\^{}n  -  1  x)))
Date html generated:
2017_04_14-AM-07_34_21
Last ObjectModification:
2017_02_27-PM-03_07_29
Theory : fun_1
Home
Index