Nuprl Lemma : eq_int_wf

[i,j:ℤ].  ((i =z j) ∈ 𝔹)


Proof




Definitions occuring in Statement :  eq_int: (i =z j) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T eq_int: (i =z j) false: False implies:  Q not: ¬A
Lemmas referenced :  btrue_wf bfalse_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule int_eqEquality hypothesisEquality extract_by_obid hypothesis sqequalHypSubstitution axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  isect_memberEquality isectElimination thin intEquality Error :universeIsType

Latex:
\mforall{}[i,j:\mBbbZ{}].    ((i  =\msubz{}  j)  \mmember{}  \mBbbB{})



Date html generated: 2019_06_20-AM-11_19_51
Last ObjectModification: 2018_09_26-AM-10_50_30

Theory : basic_types


Home Index