Nuprl Lemma : eq_int_wf
∀[i,j:ℤ].  ((i =z j) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
eq_int: (i =z j)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
eq_int: (i =z j)
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
Lemmas referenced : 
btrue_wf, 
bfalse_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
int_eqEquality, 
hypothesisEquality, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
isect_memberEquality, 
isectElimination, 
thin, 
intEquality, 
Error :universeIsType
Latex:
\mforall{}[i,j:\mBbbZ{}].    ((i  =\msubz{}  j)  \mmember{}  \mBbbB{})
Date html generated:
2019_06_20-AM-11_19_51
Last ObjectModification:
2018_09_26-AM-10_50_30
Theory : basic_types
Home
Index