Nuprl Lemma : assert_of_eq_int
∀[x,y:ℤ].  uiff(↑(x =z y);x = y ∈ ℤ)
Proof
Definitions occuring in Statement : 
assert: ↑b
, 
eq_int: (i =z j)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
subtype_rel: A ⊆r B
, 
false: False
, 
true: True
, 
bool: 𝔹
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
prop: ℙ
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
eq_int: (i =z j)
, 
or: P ∨ Q
, 
not: ¬A
, 
guard: {T}
, 
sq_type: SQType(T)
, 
less_than': less_than'(a;b)
, 
squash: ↓T
, 
less_than: a < b
, 
bfalse: ff
, 
btrue: tt
Lemmas referenced : 
int_subtype_base, 
equal-wf-base, 
equal_wf, 
false_wf, 
true_wf, 
bool_wf, 
eq_int_wf, 
assert_wf, 
add-monotonic, 
less_than_wf, 
subtype_base_sq, 
less-trichotomy
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
independent_pairEquality, 
productElimination, 
applyEquality, 
intEquality, 
independent_functionElimination, 
dependent_functionElimination, 
voidElimination, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
unionElimination, 
lambdaFormation, 
sqequalRule, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesis, 
independent_pairFormation, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
addInverse, 
inlFormation, 
minusEquality, 
independent_isectElimination, 
cumulativity, 
instantiate, 
imageElimination, 
int_eqReduceFalseSq, 
Error :lambdaFormation_alt, 
Error :equalityIsType4, 
Error :inhabitedIsType, 
baseApply, 
closedConclusion, 
baseClosed, 
hyp_replacement, 
Error :dependent_set_memberEquality_alt, 
Error :productIsType, 
applyLambdaEquality, 
setElimination, 
rename, 
natural_numberEquality, 
int_eqReduceTrueSq
Latex:
\mforall{}[x,y:\mBbbZ{}].    uiff(\muparrow{}(x  =\msubz{}  y);x  =  y)
Date html generated:
2019_06_20-AM-11_20_10
Last ObjectModification:
2018_10_15-PM-07_38_41
Theory : union
Home
Index