Nuprl Lemma : assert_of_eq_int

[x,y:ℤ].  uiff(↑(x =z y);x y ∈ ℤ)


Proof




Definitions occuring in Statement :  assert: b eq_int: (i =z j) uiff: uiff(P;Q) uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  subtype_rel: A ⊆B false: False true: True bool: 𝔹 implies:  Q all: x:A. B[x] ifthenelse: if then else fi  assert: b prop: uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) member: t ∈ T uall: [x:A]. B[x] eq_int: (i =z j) or: P ∨ Q not: ¬A guard: {T} sq_type: SQType(T) less_than': less_than'(a;b) squash: T less_than: a < b bfalse: ff btrue: tt
Lemmas referenced :  int_subtype_base equal-wf-base equal_wf false_wf true_wf bool_wf eq_int_wf assert_wf add-monotonic less_than_wf subtype_base_sq less-trichotomy
Rules used in proof :  because_Cache isect_memberEquality independent_pairEquality productElimination applyEquality intEquality independent_functionElimination dependent_functionElimination voidElimination equalitySymmetry equalityTransitivity axiomEquality unionElimination lambdaFormation sqequalRule hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid hypothesis independent_pairFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution addInverse inlFormation minusEquality independent_isectElimination cumulativity instantiate imageElimination int_eqReduceFalseSq Error :lambdaFormation_alt,  Error :equalityIsType4,  Error :inhabitedIsType,  baseApply closedConclusion baseClosed hyp_replacement Error :dependent_set_memberEquality_alt,  Error :productIsType,  applyLambdaEquality setElimination rename natural_numberEquality int_eqReduceTrueSq

Latex:
\mforall{}[x,y:\mBbbZ{}].    uiff(\muparrow{}(x  =\msubz{}  y);x  =  y)



Date html generated: 2019_06_20-AM-11_20_10
Last ObjectModification: 2018_10_15-PM-07_38_41

Theory : union


Home Index