Nuprl Lemma : neg_assert_of_eq_int
∀[x,y:ℤ].  uiff(¬↑(x =z y);x ≠ y)
Proof
Definitions occuring in Statement : 
assert: ↑b
, 
eq_int: (i =z j)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
equal-wf-base, 
int_subtype_base, 
not_wf, 
assert_wf, 
eq_int_wf, 
nequal_wf, 
iff_weakening_uiff, 
not_functionality_wrt_uiff, 
assert_of_eq_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
isect_memberEquality, 
isectElimination, 
hypothesisEquality, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
extract_by_obid, 
intEquality, 
applyEquality, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
voidElimination, 
Error :universeIsType, 
independent_pairFormation, 
independent_isectElimination, 
independent_functionElimination, 
instantiate, 
cumulativity
Latex:
\mforall{}[x,y:\mBbbZ{}].    uiff(\mneg{}\muparrow{}(x  =\msubz{}  y);x  \mneq{}  y)
Date html generated:
2019_06_20-AM-11_31_29
Last ObjectModification:
2018_09_26-AM-11_24_48
Theory : bool_1
Home
Index