Nuprl Lemma : neg_assert_of_eq_int

[x,y:ℤ].  uiff(¬↑(x =z y);x ≠ y)


Proof




Definitions occuring in Statement :  assert: b eq_int: (i =z j) uiff: uiff(P;Q) uall: [x:A]. B[x] nequal: a ≠ b ∈  not: ¬A int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a nequal: a ≠ b ∈  not: ¬A implies:  Q false: False subtype_rel: A ⊆B prop: guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equal-wf-base int_subtype_base not_wf assert_wf eq_int_wf nequal_wf iff_weakening_uiff not_functionality_wrt_uiff assert_of_eq_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality isect_memberEquality isectElimination hypothesisEquality lambdaEquality dependent_functionElimination because_Cache extract_by_obid intEquality applyEquality hypothesis equalityTransitivity equalitySymmetry Error :inhabitedIsType,  voidElimination Error :universeIsType,  independent_pairFormation independent_isectElimination independent_functionElimination instantiate cumulativity

Latex:
\mforall{}[x,y:\mBbbZ{}].    uiff(\mneg{}\muparrow{}(x  =\msubz{}  y);x  \mneq{}  y)



Date html generated: 2019_06_20-AM-11_31_29
Last ObjectModification: 2018_09_26-AM-11_24_48

Theory : bool_1


Home Index