Nuprl Lemma : has-value-implies-dec-isinl-2
∀t:Base. ((t)↓
⇒ ((t ~ inl outl(t)) ∨ (∀a,b:Base. (if t is inl then a else b ~ b))))
Proof
Definitions occuring in Statement :
has-value: (a)↓
,
outl: outl(x)
,
isinl: isinl def,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
or: P ∨ Q
,
inl: inl x
,
base: Base
,
sqequal: s ~ t
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
or: P ∨ Q
,
prop: ℙ
,
uall: ∀[x:A]. B[x]
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
guard: {T}
,
uimplies: b supposing a
,
has-value: (a)↓
,
false: False
,
top: Top
,
sq_type: SQType(T)
Lemmas referenced :
top_wf,
not_zero_sqequal_one,
is-exception_wf,
has-value_wf_base,
subtype_rel_self,
subtype_base_sq,
base_wf,
all_wf,
has-value-implies-dec-isinl
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
lemma_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
baseClosed,
independent_functionElimination,
hypothesis,
unionElimination,
inlFormation,
isectElimination,
sqequalRule,
lambdaEquality,
sqequalIntensionalEquality,
baseApply,
closedConclusion,
inrFormation,
instantiate,
because_Cache,
independent_isectElimination,
isinlCases,
divergentSqle,
voidElimination,
isect_memberFormation,
introduction,
sqequalAxiom,
isect_memberEquality,
voidEquality,
equalityTransitivity,
equalitySymmetry
Latex:
\mforall{}t:Base. ((t)\mdownarrow{} {}\mRightarrow{} ((t \msim{} inl outl(t)) \mvee{} (\mforall{}a,b:Base. (if t is inl then a else b \msim{} b))))
Date html generated:
2016_05_13-PM-03_22_41
Last ObjectModification:
2016_01_14-PM-06_46_46
Theory : call!by!value_1
Home
Index