Nuprl Lemma : not_zero_sqequal_one
(0 ~ 1) 
⇒ False
Proof
Definitions occuring in Statement : 
implies: P 
⇒ Q
, 
false: False
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
true: True
, 
false: False
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
hypothesis, 
natural_numberEquality, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
promote_hyp, 
sqequalIntensionalEquality
Latex:
(0  \msim{}  1)  {}\mRightarrow{}  False
Date html generated:
2016_05_13-PM-03_19_57
Last ObjectModification:
2015_12_26-AM-09_09_19
Theory : sqequal_1
Home
Index