Nuprl Lemma : select-cons-tl

[a,as:Top]. ∀[i:ℤ].  [a as][i] as[i 1] supposing 0 < i


Proof




Definitions occuring in Statement :  select: L[n] cons: [a b] less_than: a < b uimplies: supposing a uall: [x:A]. B[x] top: Top subtract: m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  select: L[n] all: x:A. B[x] so_lambda: λ2y.t[x; y] member: t ∈ T top: Top so_apply: x[s1;s2] uall: [x:A]. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a less_than: a < b less_than': less_than'(a;b) true: True squash: T not: ¬A false: False prop: subtype_rel: A ⊆B le: A ≤ B bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b has-value: (a)↓
Lemmas referenced :  spread_cons_lemma lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int less_than_wf less-iff-le add_functionality_wrt_le add-associates add-zero add-commutes le-add-cancel2 eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot value-type-has-value int-value-type subtract_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isectElimination hypothesisEquality natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination lessCases isect_memberFormation sqequalAxiom because_Cache independent_pairFormation imageMemberEquality baseClosed imageElimination independent_functionElimination addEquality applyEquality lambdaEquality intEquality dependent_pairFormation promote_hyp instantiate cumulativity callbyvalueReduce

Latex:
\mforall{}[a,as:Top].  \mforall{}[i:\mBbbZ{}].    [a  /  as][i]  \msim{}  as[i  -  1]  supposing  0  <  i



Date html generated: 2017_04_14-AM-08_36_40
Last ObjectModification: 2017_02_27-PM-03_28_26

Theory : list_0


Home Index