Nuprl Lemma : select-cons-tl
∀[a,as:Top]. ∀[i:ℤ]. [a / as][i] ~ as[i - 1] supposing 0 < i
Proof
Definitions occuring in Statement :
select: L[n]
,
cons: [a / b]
,
less_than: a < b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
top: Top
,
subtract: n - m
,
natural_number: $n
,
int: ℤ
,
sqequal: s ~ t
Definitions unfolded in proof :
select: L[n]
,
all: ∀x:A. B[x]
,
so_lambda: λ2x y.t[x; y]
,
member: t ∈ T
,
top: Top
,
so_apply: x[s1;s2]
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
less_than: a < b
,
less_than': less_than'(a;b)
,
true: True
,
squash: ↓T
,
not: ¬A
,
false: False
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
le: A ≤ B
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
ifthenelse: if b then t else f fi
,
assert: ↑b
,
has-value: (a)↓
Lemmas referenced :
spread_cons_lemma,
lt_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_lt_int,
less_than_wf,
less-iff-le,
add_functionality_wrt_le,
add-associates,
add-zero,
add-commutes,
le-add-cancel2,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
value-type-has-value,
int-value-type,
subtract_wf,
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
isect_memberEquality,
voidElimination,
voidEquality,
hypothesis,
isectElimination,
hypothesisEquality,
natural_numberEquality,
lambdaFormation,
unionElimination,
equalityElimination,
equalityTransitivity,
equalitySymmetry,
productElimination,
independent_isectElimination,
lessCases,
isect_memberFormation,
sqequalAxiom,
because_Cache,
independent_pairFormation,
imageMemberEquality,
baseClosed,
imageElimination,
independent_functionElimination,
addEquality,
applyEquality,
lambdaEquality,
intEquality,
dependent_pairFormation,
promote_hyp,
instantiate,
cumulativity,
callbyvalueReduce
Latex:
\mforall{}[a,as:Top]. \mforall{}[i:\mBbbZ{}]. [a / as][i] \msim{} as[i - 1] supposing 0 < i
Date html generated:
2017_04_14-AM-08_36_40
Last ObjectModification:
2017_02_27-PM-03_28_26
Theory : list_0
Home
Index