Nuprl Lemma : append_wf

[T:Type]. ∀[as,bs:T List].  (as bs ∈ List)


Proof




Definitions occuring in Statement :  append: as bs list: List uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  append: as bs uall: [x:A]. B[x] member: t ∈ T so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  list_ind_wf list_wf cons_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:T  List].    (as  @  bs  \mmember{}  T  List)



Date html generated: 2016_05_14-AM-06_28_15
Last ObjectModification: 2015_12_26-PM-00_41_04

Theory : list_0


Home Index