Nuprl Lemma : int_formula_ind_wf_simple

[A:Type]. ∀[v:int_formula()]. ∀[less,le,eq:left:int_term() ⟶ right:int_term() ⟶ A].
[and,or,implies:left:int_formula() ⟶ right:int_formula() ⟶ A ⟶ A ⟶ A]. ∀[not:form:int_formula() ⟶ A ⟶ A].
  (int_formula_ind(v;
                   intformless(left,right) less[left;right];
                   intformle(left,right) le[left;right];
                   intformeq(left,right) eq[left;right];
                   intformand(left,right) rec1,rec2.and[left;right;rec1;rec2];
                   intformor(left,right) rec3,rec4.or[left;right;rec3;rec4];
                   intformimplies(left,right) rec5,rec6.implies[left;right;rec5;rec6];
                   intformnot(form) rec7.not[form;rec7])  ∈ A)


Proof




Definitions occuring in Statement :  int_formula_ind: int_formula_ind int_formula: int_formula() int_term: int_term() uall: [x:A]. B[x] so_apply: x[s1;s2;s3;s4] so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B prop: uimplies: supposing a true: True so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x]
Lemmas referenced :  int_formula_ind_wf true_wf int_formula_wf subtype_rel_function subtype_rel_self int_term_wf subtype_rel_dep_function istype-universe
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule Error :lambdaEquality_alt,  Error :universeIsType,  functionExtensionality applyEquality because_Cache setEquality independent_isectElimination Error :dependent_set_memberEquality_alt,  natural_numberEquality functionEquality Error :inhabitedIsType,  Error :lambdaFormation_alt,  Error :setIsType,  setElimination rename applyLambdaEquality Error :functionIsType,  instantiate universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[v:int\_formula()].  \mforall{}[less,le,eq:left:int\_term()  {}\mrightarrow{}  right:int\_term()  {}\mrightarrow{}  A].
\mforall{}[and,or,implies:left:int\_formula()  {}\mrightarrow{}  right:int\_formula()  {}\mrightarrow{}  A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].  \mforall{}[not:form:int\_formula()
                                                                                                                                                                    {}\mrightarrow{}  A
                                                                                                                                                                    {}\mrightarrow{}  A].
    (int\_formula\_ind(v;
                                      intformless(left,right){}\mRightarrow{}  less[left;right];
                                      intformle(left,right){}\mRightarrow{}  le[left;right];
                                      intformeq(left,right){}\mRightarrow{}  eq[left;right];
                                      intformand(left,right){}\mRightarrow{}  rec1,rec2.and[left;right;rec1;rec2];
                                      intformor(left,right){}\mRightarrow{}  rec3,rec4.or[left;right;rec3;rec4];
                                      intformimplies(left,right){}\mRightarrow{}  rec5,rec6.implies[left;right;rec5;rec6];
                                      intformnot(form){}\mRightarrow{}  rec7.not[form;rec7])    \mmember{}  A)



Date html generated: 2019_06_20-PM-00_46_36
Last ObjectModification: 2019_01_12-AM-10_32_29

Theory : omega


Home Index