Nuprl Lemma : int_formula_ind_wf

[A:Type]. ∀[R:A ⟶ int_formula() ⟶ ℙ]. ∀[v:int_formula()]. ∀[less:left:int_term()
                                                                    ⟶ right:int_term()
                                                                    ⟶ {x:A| R[x;(left "<right)]} ].
[le:left:int_term() ⟶ right:int_term() ⟶ {x:A| R[x;left "≤right]} ]. ∀[eq:left:int_term()
                                                                              ⟶ right:int_term()
                                                                              ⟶ {x:A| R[x;left "=" right]} ].
[and:left:int_formula() ⟶ right:int_formula() ⟶ {x:A| R[x;left]}  ⟶ {x:A| R[x;right]}  ⟶ {x:A| R[x;left "∧right]}\000C ].
[or:left:int_formula() ⟶ right:int_formula() ⟶ {x:A| R[x;left]}  ⟶ {x:A| R[x;right]}  ⟶ {x:A| R[x;left "or" right]}\000C ].
[implies:left:int_formula()
          ⟶ right:int_formula()
          ⟶ {x:A| R[x;left]} 
          ⟶ {x:A| R[x;right]} 
          ⟶ {x:A| R[x;left "=>right]} ]. ∀[not:form:int_formula() ⟶ {x:A| R[x;form]}  ⟶ {x:A| R[x;"¬"form]} ].
  (int_formula_ind(v;
                   intformless(left,right) less[left;right];
                   intformle(left,right) le[left;right];
                   intformeq(left,right) eq[left;right];
                   intformand(left,right) rec1,rec2.and[left;right;rec1;rec2];
                   intformor(left,right) rec3,rec4.or[left;right;rec3;rec4];
                   intformimplies(left,right) rec5,rec6.implies[left;right;rec5;rec6];
                   intformnot(form) rec7.not[form;rec7])  ∈ {x:A| R[x;v]} )


Proof




Definitions occuring in Statement :  int_formula_ind: int_formula_ind intformnot: "form intformimplies: left "=>right intformor: left "or" right intformand: left "∧right intformeq: left "=" right intformle: left "≤right intformless: (left "<right) int_formula: int_formula() int_term: int_term() uall: [x:A]. B[x] prop: so_apply: x[s1;s2;s3;s4] so_apply: x[s1;s2] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_formula_ind: int_formula_ind so_apply: x[s1;s2] so_apply: x[s1;s2;s3;s4] int_formula-definition int_formula-induction uniform-comp-nat-induction int_formula-ext eq_atom: =a y btrue: tt it: bfalse: ff bool_cases_sqequal eqff_to_assert any: any x top: Top all: x:A. B[x] implies:  Q has-value: (a)↓ so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a subtype_rel: A ⊆B prop: guard: {T}
Lemmas referenced :  int_formula-definition istype-void has-value_wf_base is-exception_wf lifting-strict-atom_eq strict4-decide int_term_wf intformless_wf intformle_wf intformeq_wf intformand_wf intformor_wf intformimplies_wf intformnot_wf int_formula_wf all_wf set_wf subtype_rel_function subtype_rel_self istype-universe int_formula-induction uniform-comp-nat-induction int_formula-ext bool_cases_sqequal eqff_to_assert
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut sqequalRule Error :isect_memberEquality_alt,  voidElimination introduction extract_by_obid hypothesis Error :inhabitedIsType,  Error :lambdaFormation_alt,  thin sqequalSqle divergentSqle callbyvalueDecide sqequalHypSubstitution hypothesisEquality unionElimination sqleReflexivity Error :equalityIstype,  equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination decideExceptionCases axiomSqleEquality exceptionSqequal baseApply closedConclusion baseClosed isectElimination independent_isectElimination instantiate applyEquality Error :lambdaEquality_alt,  Error :isectIsType,  Error :functionIsType,  Error :universeIsType,  universeEquality because_Cache Error :setIsType,  functionEquality setEquality functionExtensionality setElimination rename Error :dependent_set_memberEquality_alt

Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  int\_formula()  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[v:int\_formula()].  \mforall{}[less:left:int\_term()
                                                                                                                                        {}\mrightarrow{}  right:int\_term()
                                                                                                                                        {}\mrightarrow{}  \{x:A| 
                                                                                                                                                R[x;(left  "<"  right)]\}  ].
\mforall{}[le:left:int\_term()  {}\mrightarrow{}  right:int\_term()  {}\mrightarrow{}  \{x:A|  R[x;left  "\mleq{}"  right]\}  ].
\mforall{}[eq:left:int\_term()  {}\mrightarrow{}  right:int\_term()  {}\mrightarrow{}  \{x:A|  R[x;left  "="  right]\}  ].
\mforall{}[and:left:int\_formula()
            {}\mrightarrow{}  right:int\_formula()
            {}\mrightarrow{}  \{x:A|  R[x;left]\} 
            {}\mrightarrow{}  \{x:A|  R[x;right]\} 
            {}\mrightarrow{}  \{x:A|  R[x;left  "\mwedge{}"  right]\}  ].  \mforall{}[or:left:int\_formula()
                                                                                      {}\mrightarrow{}  right:int\_formula()
                                                                                      {}\mrightarrow{}  \{x:A|  R[x;left]\} 
                                                                                      {}\mrightarrow{}  \{x:A|  R[x;right]\} 
                                                                                      {}\mrightarrow{}  \{x:A|  R[x;left  "or"  right]\}  ].
\mforall{}[implies:left:int\_formula()
                    {}\mrightarrow{}  right:int\_formula()
                    {}\mrightarrow{}  \{x:A|  R[x;left]\} 
                    {}\mrightarrow{}  \{x:A|  R[x;right]\} 
                    {}\mrightarrow{}  \{x:A|  R[x;left  "=>"  right]\}  ].  \mforall{}[not:form:int\_formula()
                                                                                                  {}\mrightarrow{}  \{x:A|  R[x;form]\} 
                                                                                                  {}\mrightarrow{}  \{x:A|  R[x;"\mneg{}"form]\}  ].
    (int\_formula\_ind(v;
                                      intformless(left,right){}\mRightarrow{}  less[left;right];
                                      intformle(left,right){}\mRightarrow{}  le[left;right];
                                      intformeq(left,right){}\mRightarrow{}  eq[left;right];
                                      intformand(left,right){}\mRightarrow{}  rec1,rec2.and[left;right;rec1;rec2];
                                      intformor(left,right){}\mRightarrow{}  rec3,rec4.or[left;right;rec3;rec4];
                                      intformimplies(left,right){}\mRightarrow{}  rec5,rec6.implies[left;right;rec5;rec6];
                                      intformnot(form){}\mRightarrow{}  rec7.not[form;rec7])    \mmember{}  \{x:A|  R[x;v]\}  )



Date html generated: 2019_06_20-PM-00_46_31
Last ObjectModification: 2019_01_10-PM-09_15_19

Theory : omega


Home Index