Nuprl Lemma : uniform-comp-nat-induction
∀[P:ℕ ⟶ ℙ]. ((∀[n:ℕ]. ((∀[m:ℕn]. P[m]) 
⇒ P[n])) 
⇒ (∀[n:ℕ]. P[n]))
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
nat: ℕ
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
ge: i ≥ j 
, 
cand: A c∧ B
, 
less_than: a < b
, 
squash: ↓T
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
top: Top
, 
true: True
, 
sq_stable: SqStable(P)
Lemmas referenced : 
istype-nat, 
int_seg_wf, 
int_seg_subtype_nat, 
istype-false, 
subtype_rel_self, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
istype-less_than, 
subtract-1-ge-0, 
decidable__lt, 
subtract_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
istype-void, 
minus-minus, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
less-iff-le, 
add_functionality_wrt_le, 
add-associates, 
le-add-cancel, 
istype-le, 
decidable__le, 
not-le-2, 
sq_stable__le, 
zero-add, 
add-zero, 
add-mul-special, 
zero-mul
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
sqequalRule, 
Error :isectIsType, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
Error :functionIsType, 
Error :universeIsType, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
applyEquality, 
productElimination, 
independent_isectElimination, 
independent_pairFormation, 
instantiate, 
universeEquality, 
because_Cache, 
intWeakElimination, 
imageElimination, 
independent_functionElimination, 
voidElimination, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
axiomEquality, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
Error :isect_memberEquality_alt, 
Error :dependent_set_memberEquality_alt, 
unionElimination, 
addEquality, 
minusEquality, 
Error :productIsType, 
equalityTransitivity, 
equalitySymmetry, 
Error :equalityIstype, 
imageMemberEquality, 
baseClosed, 
multiplyEquality
Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}[n:\mBbbN{}].  ((\mforall{}[m:\mBbbN{}n].  P[m])  {}\mRightarrow{}  P[n]))  {}\mRightarrow{}  (\mforall{}[n:\mBbbN{}].  P[n]))
Date html generated:
2019_06_20-AM-11_33_40
Last ObjectModification:
2019_03_12-PM-05_31_41
Theory : int_1
Home
Index