Nuprl Lemma : int_seg_subtype_nat
∀[a,b:ℤ].  {a..b-} ⊆r ℕ supposing 0 ≤ a
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
lelt: i ≤ j < k
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
le: A ≤ B
, 
guard: {T}
Lemmas referenced : 
subtype_rel_sets, 
and_wf, 
le_wf, 
less_than_wf, 
le_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
because_Cache, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
independent_isectElimination, 
setElimination, 
rename, 
setEquality, 
lambdaFormation, 
productElimination, 
axiomEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[a,b:\mBbbZ{}].    \{a..b\msupminus{}\}  \msubseteq{}r  \mBbbN{}  supposing  0  \mleq{}  a
Date html generated:
2016_05_13-PM-03_33_14
Last ObjectModification:
2015_12_26-AM-09_44_52
Theory : arithmetic
Home
Index