Nuprl Lemma : int_seg_subtype_nat

[a,b:ℤ].  {a..b-} ⊆r ℕ supposing 0 ≤ a


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] le: A ≤ B natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a int_seg: {i..j-} nat: so_lambda: λ2x.t[x] lelt: i ≤ j < k so_apply: x[s] subtype_rel: A ⊆B and: P ∧ Q prop: all: x:A. B[x] implies:  Q le: A ≤ B guard: {T}
Lemmas referenced :  subtype_rel_sets and_wf le_wf less_than_wf le_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality because_Cache lambdaEquality hypothesisEquality hypothesis natural_numberEquality independent_isectElimination setElimination rename setEquality lambdaFormation productElimination axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[a,b:\mBbbZ{}].    \{a..b\msupminus{}\}  \msubseteq{}r  \mBbbN{}  supposing  0  \mleq{}  a



Date html generated: 2016_05_13-PM-03_33_14
Last ObjectModification: 2015_12_26-AM-09_44_52

Theory : arithmetic


Home Index