Nuprl Lemma : set_wf

[A:Type]. ∀[B:A ⟶ Type].  ({a:A| B[a]}  ∈ Type)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_apply: x[s]
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut setEquality hypothesisEquality applyEquality sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality isect_memberEquality isectElimination thin because_Cache

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    (\{a:A|  B[a]\}    \mmember{}  Type)



Date html generated: 2016_05_13-PM-03_06_35
Last ObjectModification: 2016_01_06-PM-05_29_04

Theory : core_2


Home Index