Nuprl Lemma : int_formula-ext

int_formula() ≡ lbl:Atom × if lbl =a "less" then left:int_term() × int_term()
                           if lbl =a "le" then left:int_term() × int_term()
                           if lbl =a "eq" then left:int_term() × int_term()
                           if lbl =a "and" then left:int_formula() × int_formula()
                           if lbl =a "or" then left:int_formula() × int_formula()
                           if lbl =a "implies" then left:int_formula() × int_formula()
                           if lbl =a "not" then int_formula()
                           else Void
                           fi 


Proof




Definitions occuring in Statement :  int_formula: int_formula() int_term: int_term() ifthenelse: if then else fi  eq_atom: =a y ext-eq: A ≡ B product: x:A × B[x] token: "$token" atom: Atom void: Void
Definitions unfolded in proof :  ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B member: t ∈ T int_formula: int_formula() uall: [x:A]. B[x] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a ifthenelse: if then else fi  sq_type: SQType(T) guard: {T} eq_atom: =a y int_formulaco_size: int_formulaco_size(p) has-value: (a)↓ bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q bnot: ¬bb assert: b false: False pi1: fst(t) pi2: snd(t) nat: so_lambda: λ2x.t[x] so_apply: x[s] int_formula_size: int_formula_size(p) le: A ≤ B less_than': less_than'(a;b) not: ¬A
Lemmas referenced :  int_formulaco-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base int_term_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom int_subtype_base int_formulaco_size_wf subtype_partial_sqtype_base nat_wf set_subtype_base le_wf base_wf value-type-has-value int-value-type has-value_wf-partial set-value-type int_formula_wf int_formulaco_wf add-nat false_wf int_formula_size_wf nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation lambdaEquality sqequalHypSubstitution setElimination thin rename cut introduction extract_by_obid hypothesis promote_hyp productElimination hypothesis_subsumption hypothesisEquality applyEquality sqequalRule dependent_pairEquality isectElimination tokenEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination because_Cache instantiate cumulativity atomEquality dependent_functionElimination independent_functionElimination dependent_pairFormation voidElimination dependent_set_memberEquality natural_numberEquality intEquality baseApply closedConclusion baseClosed callbyvalueAdd productEquality voidEquality sqleReflexivity

Latex:
int\_formula()  \mequiv{}  lbl:Atom  \mtimes{}  if  lbl  =a  "less"  then  left:int\_term()  \mtimes{}  int\_term()
                                                      if  lbl  =a  "le"  then  left:int\_term()  \mtimes{}  int\_term()
                                                      if  lbl  =a  "eq"  then  left:int\_term()  \mtimes{}  int\_term()
                                                      if  lbl  =a  "and"  then  left:int\_formula()  \mtimes{}  int\_formula()
                                                      if  lbl  =a  "or"  then  left:int\_formula()  \mtimes{}  int\_formula()
                                                      if  lbl  =a  "implies"  then  left:int\_formula()  \mtimes{}  int\_formula()
                                                      if  lbl  =a  "not"  then  int\_formula()
                                                      else  Void
                                                      fi 



Date html generated: 2017_04_14-AM-08_59_53
Last ObjectModification: 2017_02_27-PM-03_42_32

Theory : omega


Home Index