Nuprl Lemma : add-nat

[x,y:ℕ].  (x y ∈ ℕ)


Proof




Definitions occuring in Statement :  nat: uall: [x:A]. B[x] member: t ∈ T add: m
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: all: x:A. B[x] implies:  Q guard: {T} sq_stable: SqStable(P) squash: T prop:
Lemmas referenced :  add_nat_wf nat_wf sq_stable__le equal_wf le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality addEquality sqequalHypSubstitution setElimination thin rename hypothesisEquality hypothesis extract_by_obid isectElimination lambdaFormation natural_numberEquality independent_functionElimination sqequalRule imageMemberEquality baseClosed imageElimination equalityTransitivity equalitySymmetry dependent_functionElimination axiomEquality isect_memberEquality because_Cache

Latex:
\mforall{}[x,y:\mBbbN{}].    (x  +  y  \mmember{}  \mBbbN{})



Date html generated: 2017_04_14-AM-07_20_37
Last ObjectModification: 2017_02_27-PM-02_54_22

Theory : arithmetic


Home Index