Nuprl Lemma : add-nat
∀[x,y:ℕ].  (x + y ∈ ℕ)
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
add: n + m
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
prop: ℙ
Lemmas referenced : 
add_nat_wf, 
nat_wf, 
sq_stable__le, 
equal_wf, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
addEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
hypothesisEquality, 
hypothesis, 
extract_by_obid, 
isectElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[x,y:\mBbbN{}].    (x  +  y  \mmember{}  \mBbbN{})
Date html generated:
2017_04_14-AM-07_20_37
Last ObjectModification:
2017_02_27-PM-02_54_22
Theory : arithmetic
Home
Index