Nuprl Lemma : int_formulaco-ext
int_formulaco() ≡ lbl:Atom × if lbl =a "less" then left:int_term() × int_term()
                             if lbl =a "le" then left:int_term() × int_term()
                             if lbl =a "eq" then left:int_term() × int_term()
                             if lbl =a "and" then left:int_formulaco() × int_formulaco()
                             if lbl =a "or" then left:int_formulaco() × int_formulaco()
                             if lbl =a "implies" then left:int_formulaco() × int_formulaco()
                             if lbl =a "not" then int_formulaco()
                             else Void
                             fi 
Proof
Definitions occuring in Statement : 
int_formulaco: int_formulaco()
, 
int_term: int_term()
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
ext-eq: A ≡ B
, 
product: x:A × B[x]
, 
token: "$token"
, 
atom: Atom
, 
void: Void
Definitions unfolded in proof : 
int_formulaco: int_formulaco()
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
so_apply: x[s]
, 
continuous-monotone: ContinuousMonotone(T.F[T])
, 
type-monotone: Monotone(T.F[T])
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
strong-type-continuous: Continuous+(T.F[T])
, 
type-continuous: Continuous(T.F[T])
Lemmas referenced : 
corec-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
int_term_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
subtype_rel_product, 
subtype_rel_self, 
subtype_rel_wf, 
strong-continuous-depproduct, 
continuous-constant, 
strong-continuous-product, 
continuous-id, 
subtype_rel_weakening, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
productEquality, 
atomEquality, 
hypothesisEquality, 
tokenEquality, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
voidEquality, 
universeEquality, 
independent_pairFormation, 
isect_memberFormation, 
axiomEquality, 
isect_memberEquality, 
isectEquality, 
applyEquality, 
functionExtensionality, 
functionEquality
Latex:
int\_formulaco()  \mequiv{}  lbl:Atom  \mtimes{}  if  lbl  =a  "less"  then  left:int\_term()  \mtimes{}  int\_term()
                                                          if  lbl  =a  "le"  then  left:int\_term()  \mtimes{}  int\_term()
                                                          if  lbl  =a  "eq"  then  left:int\_term()  \mtimes{}  int\_term()
                                                          if  lbl  =a  "and"  then  left:int\_formulaco()  \mtimes{}  int\_formulaco()
                                                          if  lbl  =a  "or"  then  left:int\_formulaco()  \mtimes{}  int\_formulaco()
                                                          if  lbl  =a  "implies"  then  left:int\_formulaco()  \mtimes{}  int\_formulaco()
                                                          if  lbl  =a  "not"  then  int\_formulaco()
                                                          else  Void
                                                          fi 
Date html generated:
2017_04_14-AM-08_59_45
Last ObjectModification:
2017_02_27-PM-03_43_05
Theory : omega
Home
Index