Nuprl Lemma : int_formulaco-ext

int_formulaco() ≡ lbl:Atom × if lbl =a "less" then left:int_term() × int_term()
                             if lbl =a "le" then left:int_term() × int_term()
                             if lbl =a "eq" then left:int_term() × int_term()
                             if lbl =a "and" then left:int_formulaco() × int_formulaco()
                             if lbl =a "or" then left:int_formulaco() × int_formulaco()
                             if lbl =a "implies" then left:int_formulaco() × int_formulaco()
                             if lbl =a "not" then int_formulaco()
                             else Void
                             fi 


Proof




Definitions occuring in Statement :  int_formulaco: int_formulaco() int_term: int_term() ifthenelse: if then else fi  eq_atom: =a y ext-eq: A ≡ B product: x:A × B[x] token: "$token" atom: Atom void: Void
Definitions unfolded in proof :  int_formulaco: int_formulaco() uall: [x:A]. B[x] so_lambda: λ2x.t[x] member: t ∈ T all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False so_apply: x[s] continuous-monotone: ContinuousMonotone(T.F[T]) type-monotone: Monotone(T.F[T]) subtype_rel: A ⊆B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] strong-type-continuous: Continuous+(T.F[T]) type-continuous: Continuous(T.F[T])
Lemmas referenced :  corec-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom int_term_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_atom subtype_rel_product subtype_rel_self subtype_rel_wf strong-continuous-depproduct continuous-constant strong-continuous-product continuous-id subtype_rel_weakening nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality productEquality atomEquality hypothesisEquality tokenEquality hypothesis lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination because_Cache equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination voidEquality universeEquality independent_pairFormation isect_memberFormation axiomEquality isect_memberEquality isectEquality applyEquality functionExtensionality functionEquality

Latex:
int\_formulaco()  \mequiv{}  lbl:Atom  \mtimes{}  if  lbl  =a  "less"  then  left:int\_term()  \mtimes{}  int\_term()
                                                          if  lbl  =a  "le"  then  left:int\_term()  \mtimes{}  int\_term()
                                                          if  lbl  =a  "eq"  then  left:int\_term()  \mtimes{}  int\_term()
                                                          if  lbl  =a  "and"  then  left:int\_formulaco()  \mtimes{}  int\_formulaco()
                                                          if  lbl  =a  "or"  then  left:int\_formulaco()  \mtimes{}  int\_formulaco()
                                                          if  lbl  =a  "implies"  then  left:int\_formulaco()  \mtimes{}  int\_formulaco()
                                                          if  lbl  =a  "not"  then  int\_formulaco()
                                                          else  Void
                                                          fi 



Date html generated: 2017_04_14-AM-08_59_45
Last ObjectModification: 2017_02_27-PM-03_43_05

Theory : omega


Home Index