Nuprl Lemma : strong-continuous-depproduct
∀[A:Type]. ∀[G:T:Type ⟶ A ⟶ Type].  Continuous+(T.x:A × G[T;x]) supposing ∀a:A. Continuous+(T.G[T;a])
Proof
Definitions occuring in Statement : 
strong-type-continuous: Continuous+(T.F[T])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s1;s2]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
strong-type-continuous: Continuous+(T.F[T])
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
istype: istype(T)
Lemmas referenced : 
nat_wf, 
strong-type-continuous_wf, 
false_wf, 
le_wf, 
member_wf, 
pi2_wf, 
subtype_rel_product
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
Error :lambdaEquality_alt, 
Error :isectIsType, 
Error :universeIsType, 
because_Cache, 
Error :productIsType, 
hypothesisEquality, 
applyEquality, 
Error :isect_memberEquality_alt, 
productElimination, 
thin, 
Error :dependent_pairEquality_alt, 
functionExtensionality, 
universeEquality, 
extract_by_obid, 
hypothesis, 
isectEquality, 
sqequalHypSubstitution, 
independent_pairEquality, 
axiomEquality, 
Error :functionIsType, 
Error :inhabitedIsType, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
rename, 
Error :dependent_set_memberEquality_alt, 
natural_numberEquality, 
Error :lambdaFormation_alt, 
Error :equalityIsType1, 
dependent_functionElimination, 
independent_functionElimination, 
cumulativity, 
applyLambdaEquality, 
hyp_replacement, 
dependent_pairEquality, 
lambdaEquality, 
independent_isectElimination
Latex:
\mforall{}[A:Type].  \mforall{}[G:T:Type  {}\mrightarrow{}  A  {}\mrightarrow{}  Type].
    Continuous+(T.x:A  \mtimes{}  G[T;x])  supposing  \mforall{}a:A.  Continuous+(T.G[T;a])
Date html generated:
2019_06_20-PM-00_27_45
Last ObjectModification:
2018_09_30-PM-00_43_44
Theory : subtype_1
Home
Index