Nuprl Lemma : continuous-id

Continuous+(T.T)


Proof




Definitions occuring in Statement :  strong-type-continuous: Continuous+(T.F[T])
Definitions unfolded in proof :  strong-type-continuous: Continuous+(T.F[T]) uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B
Lemmas referenced :  nat_wf subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality axiomEquality hypothesis functionEquality cumulativity lemma_by_obid universeEquality isectElimination isectEquality applyEquality hypothesisEquality independent_pairFormation

Latex:
Continuous+(T.T)



Date html generated: 2016_05_13-PM-04_10_15
Last ObjectModification: 2015_12_26-AM-11_22_16

Theory : subtype_1


Home Index