Nuprl Lemma : continuous-id
Continuous+(T.T)
Proof
Definitions occuring in Statement : 
strong-type-continuous: Continuous+(T.F[T])
Definitions unfolded in proof : 
strong-type-continuous: Continuous+(T.F[T])
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
nat_wf, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
axiomEquality, 
hypothesis, 
functionEquality, 
cumulativity, 
lemma_by_obid, 
universeEquality, 
isectElimination, 
isectEquality, 
applyEquality, 
hypothesisEquality, 
independent_pairFormation
Latex:
Continuous+(T.T)
Date html generated:
2016_05_13-PM-04_10_15
Last ObjectModification:
2015_12_26-AM-11_22_16
Theory : subtype_1
Home
Index