Nuprl Lemma : int_formula-definition
∀[A:Type]. ∀[R:A ⟶ int_formula() ⟶ ℙ].
  ((∀left,right:int_term().  {x:A| R[x;(left "<" right)]} )
  ⇒ (∀left,right:int_term().  {x:A| R[x;left "≤" right]} )
  ⇒ (∀left,right:int_term().  {x:A| R[x;left "=" right]} )
  ⇒ (∀left,right:int_formula().  ({x:A| R[x;left]}  ⇒ {x:A| R[x;right]}  ⇒ {x:A| R[x;left "∧" right]} ))
  ⇒ (∀left,right:int_formula().  ({x:A| R[x;left]}  ⇒ {x:A| R[x;right]}  ⇒ {x:A| R[x;left "or" right]} ))
  ⇒ (∀left,right:int_formula().  ({x:A| R[x;left]}  ⇒ {x:A| R[x;right]}  ⇒ {x:A| R[x;left "=>" right]} ))
  ⇒ (∀form:int_formula(). ({x:A| R[x;form]}  ⇒ {x:A| R[x;"¬"form]} ))
  ⇒ {∀v:int_formula(). {x:A| R[x;v]} })
Proof
Definitions occuring in Statement : 
intformnot: "¬"form, 
intformimplies: left "=>" right, 
intformor: left "or" right, 
intformand: left "∧" right, 
intformeq: left "=" right, 
intformle: left "≤" right, 
intformless: (left "<" right), 
int_formula: int_formula(), 
int_term: int_term(), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
guard: {T}, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
guard: {T}, 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
so_apply: x[s1;s2], 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
prop: ℙ
Lemmas referenced : 
int_formula-induction, 
set_wf, 
int_formula_wf, 
all_wf, 
intformnot_wf, 
intformimplies_wf, 
intformor_wf, 
intformand_wf, 
int_term_wf, 
intformeq_wf, 
intformle_wf, 
intformless_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
independent_functionElimination, 
functionEquality, 
universeEquality, 
cumulativity
Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  int\_formula()  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}left,right:int\_term().    \{x:A|  R[x;(left  "<"  right)]\}  )
    {}\mRightarrow{}  (\mforall{}left,right:int\_term().    \{x:A|  R[x;left  "\mleq{}"  right]\}  )
    {}\mRightarrow{}  (\mforall{}left,right:int\_term().    \{x:A|  R[x;left  "="  right]\}  )
    {}\mRightarrow{}  (\mforall{}left,right:int\_formula().
                (\{x:A|  R[x;left]\}    {}\mRightarrow{}  \{x:A|  R[x;right]\}    {}\mRightarrow{}  \{x:A|  R[x;left  "\mwedge{}"  right]\}  ))
    {}\mRightarrow{}  (\mforall{}left,right:int\_formula().
                (\{x:A|  R[x;left]\}    {}\mRightarrow{}  \{x:A|  R[x;right]\}    {}\mRightarrow{}  \{x:A|  R[x;left  "or"  right]\}  ))
    {}\mRightarrow{}  (\mforall{}left,right:int\_formula().
                (\{x:A|  R[x;left]\}    {}\mRightarrow{}  \{x:A|  R[x;right]\}    {}\mRightarrow{}  \{x:A|  R[x;left  "=>"  right]\}  ))
    {}\mRightarrow{}  (\mforall{}form:int\_formula().  (\{x:A|  R[x;form]\}    {}\mRightarrow{}  \{x:A|  R[x;"\mneg{}"form]\}  ))
    {}\mRightarrow{}  \{\mforall{}v:int\_formula().  \{x:A|  R[x;v]\}  \})
Date html generated:
2016_05_14-AM-07_07_02
Last ObjectModification:
2015_12_26-PM-01_09_03
Theory : omega
Home
Index