Nuprl Lemma : omega_wf

[n:ℕ]. ∀[eqs,ineqs:{L:ℤ List| ||L|| (n 1) ∈ ℤ}  List].  (omega(eqs;ineqs) ∈ {p:IntConstraints| dim(p) 0 ∈ ℤ)


Proof




Definitions occuring in Statement :  omega: omega(eqs;ineqs) int-problem-dimension: dim(p) int-constraint-problem: IntConstraints length: ||as|| list: List nat: uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T omega: omega(eqs;ineqs) uimplies: supposing a int-constraint-problem: IntConstraints so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: prop: so_apply: x[s] implies:  Q all: x:A. B[x] unit: Unit callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a)
Lemmas referenced :  valueall-type-has-valueall int-constraint-problem_wf union-valueall-type tunion_wf nat_wf list_wf equal-wf-base-T unit_wf2 tunion-valueall-type product-valueall-type list-valueall-type set-valueall-type int-valueall-type equal-valueall-type omega_start_wf evalall-reduce rep_int_constraint_step_wf omega_step_measure less_than_wf int-problem-dimension_wf list_subtype_base int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination lambdaEquality productEquality setEquality intEquality because_Cache baseApply closedConclusion baseClosed hypothesisEquality applyEquality addEquality setElimination rename natural_numberEquality independent_functionElimination lambdaFormation callbyvalueReduce dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[eqs,ineqs:\{L:\mBbbZ{}  List|  ||L||  =  (n  +  1)\}    List].
    (omega(eqs;ineqs)  \mmember{}  \{p:IntConstraints|  dim(p)  =  0\}  )



Date html generated: 2017_04_14-AM-09_12_38
Last ObjectModification: 2017_02_27-PM-03_49_57

Theory : omega


Home Index