Nuprl Lemma : int-problem-dimension_wf

[p:IntConstraints]. (dim(p) ∈ ℕ)


Proof




Definitions occuring in Statement :  int-problem-dimension: dim(p) int-constraint-problem: IntConstraints nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int-constraint-problem: IntConstraints tunion: x:A.B[x] pi2: snd(t) so_lambda: λ2x.t[x] nat: prop: so_apply: x[s] all: x:A. B[x] or: P ∨ Q cons: [a b] int-problem-dimension: dim(p) nil: [] it: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q top: Top decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) uimplies: supposing a sq_stable: SqStable(P) squash: T guard: {T} subtract: m subtype_rel: A ⊆B true: True
Lemmas referenced :  int-constraint-problem_wf set_wf list_wf equal_wf length_wf list-cases product_subtype_list false_wf le_wf reduce_hd_cons_lemma subtract_wf decidable__le not-le-2 sq_stable__le le_antisymmetry_iff condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-commutes zero-add minus-minus add-associates add_functionality_wrt_le add-zero le-add-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution unionElimination thin hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid imageElimination productElimination isectElimination intEquality lambdaEquality hypothesisEquality addEquality setElimination rename natural_numberEquality dependent_functionElimination promote_hyp hypothesis_subsumption dependent_set_memberEquality independent_pairFormation lambdaFormation isect_memberEquality voidElimination voidEquality independent_functionElimination independent_isectElimination imageMemberEquality baseClosed applyEquality because_Cache minusEquality

Latex:
\mforall{}[p:IntConstraints].  (dim(p)  \mmember{}  \mBbbN{})



Date html generated: 2017_04_14-AM-09_10_37
Last ObjectModification: 2017_02_27-PM-03_47_44

Theory : omega


Home Index