Nuprl Lemma : int-constraint-problem_wf

IntConstraints ∈ Type


Proof




Definitions occuring in Statement :  int-constraint-problem: IntConstraints member: t ∈ T universe: Type
Definitions unfolded in proof :  int-constraint-problem: IntConstraints member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a nat: prop: so_apply: x[s]
Lemmas referenced :  tunion_wf nat_wf list_wf equal-wf-base-T list_subtype_base int_subtype_base unit_wf2
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep unionEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality productEquality setEquality intEquality baseApply closedConclusion baseClosed hypothesisEquality applyEquality independent_isectElimination addEquality setElimination rename natural_numberEquality because_Cache

Latex:
IntConstraints  \mmember{}  Type



Date html generated: 2017_04_14-AM-09_10_27
Last ObjectModification: 2017_02_27-PM-03_47_26

Theory : omega


Home Index