Nuprl Lemma : int-constraint-problem_wf
IntConstraints ∈ Type
Proof
Definitions occuring in Statement : 
int-constraint-problem: IntConstraints
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
int-constraint-problem: IntConstraints
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
nat: ℕ
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
tunion_wf, 
nat_wf, 
list_wf, 
equal-wf-base-T, 
list_subtype_base, 
int_subtype_base, 
unit_wf2
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
unionEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
productEquality, 
setEquality, 
intEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
addEquality, 
setElimination, 
rename, 
natural_numberEquality, 
because_Cache
Latex:
IntConstraints  \mmember{}  Type
Date html generated:
2017_04_14-AM-09_10_27
Last ObjectModification:
2017_02_27-PM-03_47_26
Theory : omega
Home
Index