Nuprl Lemma : rep_int_constraint_step_wf
∀[f:IntConstraints ⟶ IntConstraints]. ∀[p:IntConstraints].
rep_int_constraint_step(f;p) ∈ {p:IntConstraints| dim(p) = 0 ∈ ℤ}
supposing ∀p:IntConstraints
(0 < dim(p)
⇒ (dim(f p) < dim(p) ∨ ((dim(f p) = dim(p) ∈ ℤ) ∧ num-eq-constraints(f p) < num-eq-constraints(p))))
Proof
Definitions occuring in Statement :
rep_int_constraint_step: rep_int_constraint_step(f;p)
,
num-eq-constraints: num-eq-constraints(p)
,
int-problem-dimension: dim(p)
,
int-constraint-problem: IntConstraints
,
less_than: a < b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
or: P ∨ Q
,
and: P ∧ Q
,
member: t ∈ T
,
set: {x:A| B[x]}
,
apply: f a
,
function: x:A ⟶ B[x]
,
natural_number: $n
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
implies: P
⇒ Q
,
subtype_rel: A ⊆r B
,
and: P ∧ Q
,
nat: ℕ
,
or: P ∨ Q
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
false: False
,
ge: i ≥ j
,
guard: {T}
,
decidable: Dec(P)
,
iff: P
⇐⇒ Q
,
not: ¬A
,
rev_implies: P
⇐ Q
,
uiff: uiff(P;Q)
,
subtract: n - m
,
top: Top
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
true: True
,
sq_stable: SqStable(P)
,
squash: ↓T
,
exists: ∃x:A. B[x]
,
nat_plus: ℕ+
,
less_than: a < b
,
rep_int_constraint_step: rep_int_constraint_step(f;p)
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
bfalse: ff
,
sq_type: SQType(T)
,
bnot: ¬bb
,
ifthenelse: if b then t else f fi
,
assert: ↑b
,
int-constraint-problem: IntConstraints
,
callbyvalueall: callbyvalueall,
has-value: (a)↓
,
has-valueall: has-valueall(a)
Lemmas referenced :
all_wf,
int-constraint-problem_wf,
less_than_wf,
int-problem-dimension_wf,
or_wf,
equal_wf,
num-eq-constraints_wf,
nat_wf,
nat_properties,
less_than_transitivity1,
less_than_irreflexivity,
ge_wf,
decidable__le,
subtract_wf,
false_wf,
not-ge-2,
less-iff-le,
condition-implies-le,
minus-one-mul,
zero-add,
minus-one-mul-top,
minus-add,
minus-minus,
add-associates,
add-swap,
add-commutes,
add_functionality_wrt_le,
add-zero,
le-add-cancel,
add_nat_wf,
le_wf,
sq_stable__le,
decidable__lt,
not-lt-2,
add-mul-special,
zero-mul,
subtype_rel-equal,
base_wf,
le_weakening,
le_reflexive,
one-mul,
two-mul,
mul-distributes-right,
minus-zero,
omega-shadow,
lt_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_lt_int,
top_wf,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
valueall-type-has-valueall,
union-valueall-type,
tunion_wf,
list_wf,
equal-wf-base-T,
unit_wf2,
tunion-valueall-type,
product-valueall-type,
list-valueall-type,
set-valueall-type,
int-valueall-type,
equal-valueall-type,
evalall-reduce,
list_subtype_base,
int_subtype_base,
less_than_transitivity2,
set_subtype_base,
equal-wf-T-base,
not-less-implies-equal
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
hypothesis,
sqequalRule,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
extract_by_obid,
isectElimination,
thin,
lambdaEquality,
functionEquality,
natural_numberEquality,
hypothesisEquality,
applyEquality,
because_Cache,
functionExtensionality,
productEquality,
intEquality,
setElimination,
rename,
isect_memberEquality,
lambdaFormation,
intWeakElimination,
independent_isectElimination,
independent_functionElimination,
voidElimination,
dependent_functionElimination,
unionElimination,
independent_pairFormation,
productElimination,
addEquality,
minusEquality,
voidEquality,
dependent_set_memberEquality,
imageMemberEquality,
baseClosed,
imageElimination,
multiplyEquality,
dependent_pairFormation,
sqequalIntensionalEquality,
applyLambdaEquality,
promote_hyp,
addLevel,
levelHypothesis,
equalityElimination,
lessCases,
sqequalAxiom,
instantiate,
cumulativity,
setEquality,
baseApply,
closedConclusion,
callbyvalueReduce
Latex:
\mforall{}[f:IntConstraints {}\mrightarrow{} IntConstraints]. \mforall{}[p:IntConstraints].
rep\_int\_constraint\_step(f;p) \mmember{} \{p:IntConstraints| dim(p) = 0\}
supposing \mforall{}p:IntConstraints
(0 < dim(p)
{}\mRightarrow{} (dim(f p) < dim(p)
\mvee{} ((dim(f p) = dim(p)) \mwedge{} num-eq-constraints(f p) < num-eq-constraints(p))))
Date html generated:
2017_04_14-AM-09_10_51
Last ObjectModification:
2017_02_27-PM-03_48_41
Theory : omega
Home
Index