Nuprl Lemma : rep_int_constraint_step_wf

[f:IntConstraints ⟶ IntConstraints]. ∀[p:IntConstraints].
  rep_int_constraint_step(f;p) ∈ {p:IntConstraints| dim(p) 0 ∈ ℤ}  
  supposing ∀p:IntConstraints
              (0 < dim(p)
               (dim(f p) < dim(p) ∨ ((dim(f p) dim(p) ∈ ℤ) ∧ num-eq-constraints(f p) < num-eq-constraints(p))))


Proof




Definitions occuring in Statement :  rep_int_constraint_step: rep_int_constraint_step(f;p) num-eq-constraints: num-eq-constraints(p) int-problem-dimension: dim(p) int-constraint-problem: IntConstraints less_than: a < b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: so_lambda: λ2x.t[x] implies:  Q subtype_rel: A ⊆B and: P ∧ Q nat: or: P ∨ Q so_apply: x[s] all: x:A. B[x] false: False ge: i ≥  guard: {T} decidable: Dec(P) iff: ⇐⇒ Q not: ¬A rev_implies:  Q uiff: uiff(P;Q) subtract: m top: Top le: A ≤ B less_than': less_than'(a;b) true: True sq_stable: SqStable(P) squash: T exists: x:A. B[x] nat_plus: + less_than: a < b rep_int_constraint_step: rep_int_constraint_step(f;p) bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b int-constraint-problem: IntConstraints callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a)
Lemmas referenced :  all_wf int-constraint-problem_wf less_than_wf int-problem-dimension_wf or_wf equal_wf num-eq-constraints_wf nat_wf nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel add_nat_wf le_wf sq_stable__le decidable__lt not-lt-2 add-mul-special zero-mul subtype_rel-equal base_wf le_weakening le_reflexive one-mul two-mul mul-distributes-right minus-zero omega-shadow lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot valueall-type-has-valueall union-valueall-type tunion_wf list_wf equal-wf-base-T unit_wf2 tunion-valueall-type product-valueall-type list-valueall-type set-valueall-type int-valueall-type equal-valueall-type evalall-reduce list_subtype_base int_subtype_base less_than_transitivity2 set_subtype_base equal-wf-T-base not-less-implies-equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination thin lambdaEquality functionEquality natural_numberEquality hypothesisEquality applyEquality because_Cache functionExtensionality productEquality intEquality setElimination rename isect_memberEquality lambdaFormation intWeakElimination independent_isectElimination independent_functionElimination voidElimination dependent_functionElimination unionElimination independent_pairFormation productElimination addEquality minusEquality voidEquality dependent_set_memberEquality imageMemberEquality baseClosed imageElimination multiplyEquality dependent_pairFormation sqequalIntensionalEquality applyLambdaEquality promote_hyp addLevel levelHypothesis equalityElimination lessCases sqequalAxiom instantiate cumulativity setEquality baseApply closedConclusion callbyvalueReduce

Latex:
\mforall{}[f:IntConstraints  {}\mrightarrow{}  IntConstraints].  \mforall{}[p:IntConstraints].
    rep\_int\_constraint\_step(f;p)  \mmember{}  \{p:IntConstraints|  dim(p)  =  0\}   
    supposing  \mforall{}p:IntConstraints
                            (0  <  dim(p)
                            {}\mRightarrow{}  (dim(f  p)  <  dim(p)
                                  \mvee{}  ((dim(f  p)  =  dim(p))  \mwedge{}  num-eq-constraints(f  p)  <  num-eq-constraints(p))))



Date html generated: 2017_04_14-AM-09_10_51
Last ObjectModification: 2017_02_27-PM-03_48_41

Theory : omega


Home Index