Nuprl Lemma : rep_int_constraint_step_wf
∀[f:IntConstraints ⟶ IntConstraints]. ∀[p:IntConstraints].
  rep_int_constraint_step(f;p) ∈ {p:IntConstraints| dim(p) = 0 ∈ ℤ}  
  supposing ∀p:IntConstraints
              (0 < dim(p)
              
⇒ (dim(f p) < dim(p) ∨ ((dim(f p) = dim(p) ∈ ℤ) ∧ num-eq-constraints(f p) < num-eq-constraints(p))))
Proof
Definitions occuring in Statement : 
rep_int_constraint_step: rep_int_constraint_step(f;p)
, 
num-eq-constraints: num-eq-constraints(p)
, 
int-problem-dimension: dim(p)
, 
int-constraint-problem: IntConstraints
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
nat: ℕ
, 
or: P ∨ Q
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
false: False
, 
ge: i ≥ j 
, 
guard: {T}
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
rep_int_constraint_step: rep_int_constraint_step(f;p)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
int-constraint-problem: IntConstraints
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
Lemmas referenced : 
all_wf, 
int-constraint-problem_wf, 
less_than_wf, 
int-problem-dimension_wf, 
or_wf, 
equal_wf, 
num-eq-constraints_wf, 
nat_wf, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
add_nat_wf, 
le_wf, 
sq_stable__le, 
decidable__lt, 
not-lt-2, 
add-mul-special, 
zero-mul, 
subtype_rel-equal, 
base_wf, 
le_weakening, 
le_reflexive, 
one-mul, 
two-mul, 
mul-distributes-right, 
minus-zero, 
omega-shadow, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
valueall-type-has-valueall, 
union-valueall-type, 
tunion_wf, 
list_wf, 
equal-wf-base-T, 
unit_wf2, 
tunion-valueall-type, 
product-valueall-type, 
list-valueall-type, 
set-valueall-type, 
int-valueall-type, 
equal-valueall-type, 
evalall-reduce, 
list_subtype_base, 
int_subtype_base, 
less_than_transitivity2, 
set_subtype_base, 
equal-wf-T-base, 
not-less-implies-equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
thin, 
lambdaEquality, 
functionEquality, 
natural_numberEquality, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
functionExtensionality, 
productEquality, 
intEquality, 
setElimination, 
rename, 
isect_memberEquality, 
lambdaFormation, 
intWeakElimination, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
dependent_functionElimination, 
unionElimination, 
independent_pairFormation, 
productElimination, 
addEquality, 
minusEquality, 
voidEquality, 
dependent_set_memberEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
multiplyEquality, 
dependent_pairFormation, 
sqequalIntensionalEquality, 
applyLambdaEquality, 
promote_hyp, 
addLevel, 
levelHypothesis, 
equalityElimination, 
lessCases, 
sqequalAxiom, 
instantiate, 
cumulativity, 
setEquality, 
baseApply, 
closedConclusion, 
callbyvalueReduce
Latex:
\mforall{}[f:IntConstraints  {}\mrightarrow{}  IntConstraints].  \mforall{}[p:IntConstraints].
    rep\_int\_constraint\_step(f;p)  \mmember{}  \{p:IntConstraints|  dim(p)  =  0\}   
    supposing  \mforall{}p:IntConstraints
                            (0  <  dim(p)
                            {}\mRightarrow{}  (dim(f  p)  <  dim(p)
                                  \mvee{}  ((dim(f  p)  =  dim(p))  \mwedge{}  num-eq-constraints(f  p)  <  num-eq-constraints(p))))
Date html generated:
2017_04_14-AM-09_10_51
Last ObjectModification:
2017_02_27-PM-03_48_41
Theory : omega
Home
Index