Nuprl Lemma : subtype_rel-equal

[A,B:Type].  A ⊆supposing B ∈ Type


Proof




Definitions occuring in Statement :  uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T subtype_rel: A ⊆B prop:
Lemmas referenced :  equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut equalityTransitivity hypothesis equalitySymmetry lambdaEquality hyp_replacement hypothesisEquality thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination universeEquality

Latex:
\mforall{}[A,B:Type].    A  \msubseteq{}r  B  supposing  A  =  B



Date html generated: 2017_04_14-AM-07_14_05
Last ObjectModification: 2017_02_27-PM-02_49_58

Theory : subtype_0


Home Index