Nuprl Lemma : subtype_rel-equal
∀[A,B:Type].  A ⊆r B supposing A = B ∈ Type
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
Lemmas referenced : 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
lambdaEquality, 
hyp_replacement, 
hypothesisEquality, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
universeEquality
Latex:
\mforall{}[A,B:Type].    A  \msubseteq{}r  B  supposing  A  =  B
Date html generated:
2017_04_14-AM-07_14_05
Last ObjectModification:
2017_02_27-PM-02_49_58
Theory : subtype_0
Home
Index