Nuprl Lemma : tunion-valueall-type

[A:Type]. ∀[B:A ⟶ Type].  valueall-type(⋃a:A.B[a]) supposing ∀a:A. valueall-type(B[a])


Proof




Definitions occuring in Statement :  valueall-type: valueall-type(T) uimplies: supposing a tunion: x:A.B[x] uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a valueall-type: valueall-type(T) sq_stable: SqStable(P) implies:  Q all: x:A. B[x] tunion: x:A.B[x] has-value: (a)↓ has-valueall: has-valueall(a) so_apply: x[s] so_lambda: λ2x.t[x] top: Top pi1: fst(t) prop: squash: T guard: {T}
Lemmas referenced :  sq_stable__has-value valueall-type-has-valueall pi1_wf pi2_wf top_wf equal_wf equal-wf-base tunion_wf base_wf all_wf valueall-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule baseApply closedConclusion baseClosed hypothesisEquality hypothesis independent_functionElimination equalityTransitivity equalitySymmetry because_Cache lambdaFormation imageElimination applyEquality functionExtensionality cumulativity lambdaEquality productElimination dependent_pairEquality independent_isectElimination independent_pairEquality isect_memberEquality voidElimination voidEquality productEquality dependent_functionElimination imageMemberEquality axiomSqleEquality functionEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    valueall-type(\mcup{}a:A.B[a])  supposing  \mforall{}a:A.  valueall-type(B[a])



Date html generated: 2017_04_14-AM-07_15_04
Last ObjectModification: 2017_02_27-PM-02_50_42

Theory : call!by!value_1


Home Index