Nuprl Lemma : tunion-valueall-type
∀[A:Type]. ∀[B:A ⟶ Type]. valueall-type(⋃a:A.B[a]) supposing ∀a:A. valueall-type(B[a])
Proof
Definitions occuring in Statement :
valueall-type: valueall-type(T)
,
uimplies: b supposing a
,
tunion: ⋃x:A.B[x]
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
valueall-type: valueall-type(T)
,
sq_stable: SqStable(P)
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
,
tunion: ⋃x:A.B[x]
,
has-value: (a)↓
,
has-valueall: has-valueall(a)
,
so_apply: x[s]
,
so_lambda: λ2x.t[x]
,
top: Top
,
pi1: fst(t)
,
prop: ℙ
,
squash: ↓T
,
guard: {T}
Lemmas referenced :
sq_stable__has-value,
valueall-type-has-valueall,
pi1_wf,
pi2_wf,
top_wf,
equal_wf,
equal-wf-base,
tunion_wf,
base_wf,
all_wf,
valueall-type_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
sqequalRule,
baseApply,
closedConclusion,
baseClosed,
hypothesisEquality,
hypothesis,
independent_functionElimination,
equalityTransitivity,
equalitySymmetry,
because_Cache,
lambdaFormation,
imageElimination,
applyEquality,
functionExtensionality,
cumulativity,
lambdaEquality,
productElimination,
dependent_pairEquality,
independent_isectElimination,
independent_pairEquality,
isect_memberEquality,
voidElimination,
voidEquality,
productEquality,
dependent_functionElimination,
imageMemberEquality,
axiomSqleEquality,
functionEquality,
universeEquality
Latex:
\mforall{}[A:Type]. \mforall{}[B:A {}\mrightarrow{} Type]. valueall-type(\mcup{}a:A.B[a]) supposing \mforall{}a:A. valueall-type(B[a])
Date html generated:
2017_04_14-AM-07_15_04
Last ObjectModification:
2017_02_27-PM-02_50_42
Theory : call!by!value_1
Home
Index