Nuprl Lemma : omega_start_wf

[n:ℕ]. ∀[eqs,ineqs:{L:ℤ List| ||L|| (n 1) ∈ ℤ}  List].  (omega_start(eqs;ineqs) ∈ IntConstraints)


Proof




Definitions occuring in Statement :  omega_start: omega_start(eqs;ineqs) int-constraint-problem: IntConstraints length: ||as|| list: List nat: uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T omega_start: omega_start(eqs;ineqs) subtype_rel: A ⊆B nat: prop: all: x:A. B[x] implies:  Q uimplies: supposing a int-constraint-problem: IntConstraints tunion: x:A.B[x] pi2: snd(t) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  gcd-reduce-eq-constraints_wf2 nil_wf list_wf equal-wf-base-T unit_wf2 gcd-reduce-ineq-constraints_wf2 equal_wf list_subtype_base int_subtype_base nat_wf subtype_rel_union tunion_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setEquality intEquality hypothesis sqequalRule baseApply closedConclusion baseClosed applyEquality because_Cache addEquality setElimination rename natural_numberEquality unionEquality lambdaFormation equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination axiomEquality independent_isectElimination isect_memberEquality unionElimination inlEquality imageMemberEquality dependent_pairEquality independent_pairEquality productEquality inrEquality voidEquality lambdaEquality voidElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[eqs,ineqs:\{L:\mBbbZ{}  List|  ||L||  =  (n  +  1)\}    List].    (omega\_start(eqs;ineqs)  \mmember{}  IntConstraints)



Date html generated: 2017_04_14-AM-09_12_23
Last ObjectModification: 2017_02_27-PM-03_50_05

Theory : omega


Home Index