Nuprl Lemma : omega_start_wf
∀[n:ℕ]. ∀[eqs,ineqs:{L:ℤ List| ||L|| = (n + 1) ∈ ℤ}  List].  (omega_start(eqs;ineqs) ∈ IntConstraints)
Proof
Definitions occuring in Statement : 
omega_start: omega_start(eqs;ineqs)
, 
int-constraint-problem: IntConstraints
, 
length: ||as||
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
omega_start: omega_start(eqs;ineqs)
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
int-constraint-problem: IntConstraints
, 
tunion: ⋃x:A.B[x]
, 
pi2: snd(t)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
gcd-reduce-eq-constraints_wf2, 
nil_wf, 
list_wf, 
equal-wf-base-T, 
unit_wf2, 
gcd-reduce-ineq-constraints_wf2, 
equal_wf, 
list_subtype_base, 
int_subtype_base, 
nat_wf, 
subtype_rel_union, 
tunion_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setEquality, 
intEquality, 
hypothesis, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
because_Cache, 
addEquality, 
setElimination, 
rename, 
natural_numberEquality, 
unionEquality, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
independent_isectElimination, 
isect_memberEquality, 
unionElimination, 
inlEquality, 
imageMemberEquality, 
dependent_pairEquality, 
independent_pairEquality, 
productEquality, 
inrEquality, 
voidEquality, 
lambdaEquality, 
voidElimination
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[eqs,ineqs:\{L:\mBbbZ{}  List|  ||L||  =  (n  +  1)\}    List].    (omega\_start(eqs;ineqs)  \mmember{}  IntConstraints)
Date html generated:
2017_04_14-AM-09_12_23
Last ObjectModification:
2017_02_27-PM-03_50_05
Theory : omega
Home
Index