Nuprl Lemma : gcd-reduce-eq-constraints_wf2

[n:ℕ]. ∀[LL,sat:{L:ℤ List| ||L|| (n 1) ∈ ℤ}  List].
  (gcd-reduce-eq-constraints(sat;LL) ∈ {L:ℤ List| ||L|| (n 1) ∈ ℤ}  List?)


Proof




Definitions occuring in Statement :  gcd-reduce-eq-constraints: gcd-reduce-eq-constraints(sat;LL) length: ||as|| list: List nat: uall: [x:A]. B[x] unit: Unit member: t ∈ T set: {x:A| B[x]}  union: left right add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T gcd-reduce-eq-constraints: gcd-reduce-eq-constraints(sat;LL) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] prop: all: x:A. B[x] or: P ∨ Q sq_stable: SqStable(P) implies:  Q squash: T uiff: uiff(P;Q) and: P ∧ Q guard: {T} subtract: m top: Top le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True false: False cons: [a b] decidable: Dec(P) nil: [] it: assert: b ifthenelse: if then else fi  bfalse: ff btrue: tt eager-map: eager-map(f;as) list_ind: list_ind has-value: (a)↓ cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q listp: List+ exposed-bfalse: exposed-bfalse bool: 𝔹 unit: Unit less_than: a < b int_nzero: -o nequal: a ≠ b ∈  rev_uimplies: rev_uimplies(P;Q) exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb
Lemmas referenced :  accumulate_abort_wf list_wf equal-wf-base list_subtype_base int_subtype_base set_subtype_base le_wf istype-int istype-nat unit_wf2 list-cases length_of_nil_lemma sq_stable__le le_antisymmetry_iff condition-implies-le minus-add istype-void minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel product_subtype_list decidable__assert null_wf eager_map_cons_lemma null_cons_lemma null_nil_lemma istype-true eager_map_nil_lemma cons_wf it_wf value-type-has-value nat_wf set-value-type int-value-type absval_wf gcd-list_wf length_of_cons_lemma length_wf_nat decidable__lt istype-false not-lt-2 istype-less_than length_wf lt_int_wf eqtt_to_assert assert_of_lt_int istype-top remainder_wfa not-equal-2 decidable__le istype-le not-le-2 less-iff-le add-swap le-add-cancel2 nequal_wf eq_int_wf assert_of_eq_int list-value-type eager-map_wf divide_wfa eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int iff_weakening_uiff assert_wf less_than_wf map-length equal_wf squash_wf true_wf istype-universe subtype_rel_self iff_weakening_equal eager-map-is-map list-valueall-type set-valueall-type int-valueall-type
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule Error :lambdaEquality_alt,  independent_isectElimination hypothesis because_Cache Error :universeIsType,  setEquality intEquality baseApply closedConclusion baseClosed hypothesisEquality applyEquality natural_numberEquality Error :inlEquality_alt,  setElimination rename dependent_functionElimination unionElimination independent_functionElimination imageMemberEquality imageElimination addEquality productElimination Error :isect_memberEquality_alt,  voidElimination minusEquality promote_hyp hypothesis_subsumption Error :inhabitedIsType,  Error :lambdaFormation_alt,  Error :equalityIstype,  callbyvalueReduce sqleReflexivity Error :functionIsType,  int_eqEquality Error :dependent_set_memberEquality_alt,  sqequalBase equalitySymmetry Error :inrEquality_alt,  equalityTransitivity independent_pairFormation equalityElimination lessCases axiomSqEquality Error :isectIsTypeImplies,  Error :inlFormation_alt,  Error :inrFormation_alt,  int_eqReduceTrueSq Error :dependent_pairFormation_alt,  instantiate cumulativity int_eqReduceFalseSq universeEquality Error :setIsType

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[LL,sat:\{L:\mBbbZ{}  List|  ||L||  =  (n  +  1)\}    List].
    (gcd-reduce-eq-constraints(sat;LL)  \mmember{}  \{L:\mBbbZ{}  List|  ||L||  =  (n  +  1)\}    List?)



Date html generated: 2019_06_20-PM-00_51_01
Last ObjectModification: 2019_03_06-PM-05_17_23

Theory : omega


Home Index