Nuprl Lemma : gcd-reduce-eq-constraints_wf2
∀[n:ℕ]. ∀[LL,sat:{L:ℤ List| ||L|| = (n + 1) ∈ ℤ}  List].
  (gcd-reduce-eq-constraints(sat;LL) ∈ {L:ℤ List| ||L|| = (n + 1) ∈ ℤ}  List?)
Proof
Definitions occuring in Statement : 
gcd-reduce-eq-constraints: gcd-reduce-eq-constraints(sat;LL)
, 
length: ||as||
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
union: left + right
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
gcd-reduce-eq-constraints: gcd-reduce-eq-constraints(sat;LL)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
guard: {T}
, 
subtract: n - m
, 
top: Top
, 
le: A ≤ B
, 
not: ¬A
, 
less_than': less_than'(a;b)
, 
true: True
, 
false: False
, 
cons: [a / b]
, 
decidable: Dec(P)
, 
nil: []
, 
it: ⋅
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
eager-map: eager-map(f;as)
, 
list_ind: list_ind, 
has-value: (a)↓
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
listp: A List+
, 
exposed-bfalse: exposed-bfalse
, 
bool: 𝔹
, 
unit: Unit
, 
less_than: a < b
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
rev_uimplies: rev_uimplies(P;Q)
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
bnot: ¬bb
Lemmas referenced : 
accumulate_abort_wf, 
list_wf, 
equal-wf-base, 
list_subtype_base, 
int_subtype_base, 
set_subtype_base, 
le_wf, 
istype-int, 
istype-nat, 
unit_wf2, 
list-cases, 
length_of_nil_lemma, 
sq_stable__le, 
le_antisymmetry_iff, 
condition-implies-le, 
minus-add, 
istype-void, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
product_subtype_list, 
decidable__assert, 
null_wf, 
eager_map_cons_lemma, 
null_cons_lemma, 
null_nil_lemma, 
istype-true, 
eager_map_nil_lemma, 
cons_wf, 
it_wf, 
value-type-has-value, 
nat_wf, 
set-value-type, 
int-value-type, 
absval_wf, 
gcd-list_wf, 
length_of_cons_lemma, 
length_wf_nat, 
decidable__lt, 
istype-false, 
not-lt-2, 
istype-less_than, 
length_wf, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
istype-top, 
remainder_wfa, 
not-equal-2, 
decidable__le, 
istype-le, 
not-le-2, 
less-iff-le, 
add-swap, 
le-add-cancel2, 
nequal_wf, 
eq_int_wf, 
assert_of_eq_int, 
list-value-type, 
eager-map_wf, 
divide_wfa, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
map-length, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
subtype_rel_self, 
iff_weakening_equal, 
eager-map-is-map, 
list-valueall-type, 
set-valueall-type, 
int-valueall-type
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
Error :lambdaEquality_alt, 
independent_isectElimination, 
hypothesis, 
because_Cache, 
Error :universeIsType, 
setEquality, 
intEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
natural_numberEquality, 
Error :inlEquality_alt, 
setElimination, 
rename, 
dependent_functionElimination, 
unionElimination, 
independent_functionElimination, 
imageMemberEquality, 
imageElimination, 
addEquality, 
productElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
minusEquality, 
promote_hyp, 
hypothesis_subsumption, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
Error :equalityIstype, 
callbyvalueReduce, 
sqleReflexivity, 
Error :functionIsType, 
int_eqEquality, 
Error :dependent_set_memberEquality_alt, 
sqequalBase, 
equalitySymmetry, 
Error :inrEquality_alt, 
equalityTransitivity, 
independent_pairFormation, 
equalityElimination, 
lessCases, 
axiomSqEquality, 
Error :isectIsTypeImplies, 
Error :inlFormation_alt, 
Error :inrFormation_alt, 
int_eqReduceTrueSq, 
Error :dependent_pairFormation_alt, 
instantiate, 
cumulativity, 
int_eqReduceFalseSq, 
universeEquality, 
Error :setIsType
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[LL,sat:\{L:\mBbbZ{}  List|  ||L||  =  (n  +  1)\}    List].
    (gcd-reduce-eq-constraints(sat;LL)  \mmember{}  \{L:\mBbbZ{}  List|  ||L||  =  (n  +  1)\}    List?)
Date html generated:
2019_06_20-PM-00_51_01
Last ObjectModification:
2019_03_06-PM-05_17_23
Theory : omega
Home
Index