Nuprl Lemma : remainder_wfa

[a:ℤ]. ∀[n:ℤ-o].  (a rem n ∈ ℤ)


Proof




Definitions occuring in Statement :  int_nzero: -o uall: [x:A]. B[x] member: t ∈ T remainder: rem m int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T remainder: rem m
Lemmas referenced :  divrem_wf int_nzero_wf istype-int
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality spreadEquality Error :universeIsType

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n:\mBbbZ{}\msupminus{}\msupzero{}].    (a  rem  n  \mmember{}  \mBbbZ{})



Date html generated: 2019_06_20-AM-11_23_39
Last ObjectModification: 2019_03_06-AM-10_48_29

Theory : arithmetic


Home Index