Nuprl Lemma : remainder_wfa
∀[a:ℤ]. ∀[n:ℤ-o].  (a rem n ∈ ℤ)
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
remainder: n rem m
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
remainder: n rem m
Lemmas referenced : 
divrem_wf, 
int_nzero_wf, 
istype-int
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
spreadEquality, 
Error :universeIsType
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n:\mBbbZ{}\msupminus{}\msupzero{}].    (a  rem  n  \mmember{}  \mBbbZ{})
Date html generated:
2019_06_20-AM-11_23_39
Last ObjectModification:
2019_03_06-AM-10_48_29
Theory : arithmetic
Home
Index