Nuprl Lemma : gcd-list_wf
∀[L:ℤ List+]. (gcd-list(L) ∈ ℤ)
Proof
Definitions occuring in Statement : 
gcd-list: gcd-list(L)
, 
listp: A List+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
listp: A List+
, 
gcd-list: gcd-list(L)
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
eager-accum_wf, 
tl_wf, 
hd_wf, 
decidable__le, 
length_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-associates, 
zero-add, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel2, 
better-gcd_wf, 
int-valueall-type, 
listp_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
sqequalRule, 
lemma_by_obid, 
isectElimination, 
intEquality, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_pairFormation, 
lambdaFormation, 
voidElimination, 
productElimination, 
independent_functionElimination, 
addEquality, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[L:\mBbbZ{}  List\msupplus{}].  (gcd-list(L)  \mmember{}  \mBbbZ{})
Date html generated:
2016_05_14-AM-06_56_59
Last ObjectModification:
2015_12_26-PM-01_14_14
Theory : omega
Home
Index