Nuprl Lemma : gcd-list_wf

[L:ℤ List+]. (gcd-list(L) ∈ ℤ)


Proof




Definitions occuring in Statement :  gcd-list: gcd-list(L) listp: List+ uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T listp: List+ gcd-list: gcd-list(L) uimplies: supposing a all: x:A. B[x] ge: i ≥  decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  eager-accum_wf tl_wf hd_wf decidable__le length_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-associates zero-add add-commutes add_functionality_wrt_le add-zero le-add-cancel2 better-gcd_wf int-valueall-type listp_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename sqequalRule lemma_by_obid isectElimination intEquality because_Cache hypothesisEquality hypothesis independent_isectElimination dependent_functionElimination natural_numberEquality unionElimination independent_pairFormation lambdaFormation voidElimination productElimination independent_functionElimination addEquality applyEquality lambdaEquality isect_memberEquality voidEquality minusEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[L:\mBbbZ{}  List\msupplus{}].  (gcd-list(L)  \mmember{}  \mBbbZ{})



Date html generated: 2016_05_14-AM-06_56_59
Last ObjectModification: 2015_12_26-PM-01_14_14

Theory : omega


Home Index