Nuprl Lemma : eager-accum_wf
∀[T,T':Type]. ∀[l:T List]. ∀[y:T']. ∀[f:T' ⟶ T ⟶ T']. eager-accum(x,a.f[x;a];y;l) ∈ T' supposing valueall-type(T')
Proof
Definitions occuring in Statement :
eager-accum: eager-accum(x,a.f[x; a];y;l)
,
list: T List
,
valueall-type: valueall-type(T)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s1;s2]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
has-valueall: has-valueall(a)
,
has-value: (a)↓
,
callbyvalueall: callbyvalueall,
less_than: a < b
,
sq_type: SQType(T)
,
so_apply: x[s]
,
so_lambda: λ2x.t[x]
,
subtract: n - m
,
rev_implies: P
⇐ Q
,
iff: P
⇐⇒ Q
,
decidable: Dec(P)
,
true: True
,
less_than': less_than'(a;b)
,
not: ¬A
,
le: A ≤ B
,
and: P ∧ Q
,
uiff: uiff(P;Q)
,
sq_stable: SqStable(P)
,
squash: ↓T
,
so_apply: x[s1;s2]
,
top: Top
,
so_lambda: λ2x y.t[x; y]
,
colength: colength(L)
,
cons: [a / b]
,
it: ⋅
,
nil: []
,
eager-accum: eager-accum(x,a.f[x; a];y;l)
,
or: P ∨ Q
,
subtype_rel: A ⊆r B
,
prop: ℙ
,
uimplies: b supposing a
,
guard: {T}
,
ge: i ≥ j
,
false: False
,
implies: P
⇒ Q
,
nat: ℕ
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
list_wf,
evalall-reduce,
valueall-type-has-valueall,
int_subtype_base,
set_subtype_base,
subtype_base_sq,
add-swap,
minus-minus,
less-iff-le,
not-ge-2,
subtract_wf,
equal_wf,
le_wf,
add-commutes,
minus-one-mul-top,
minus-one-mul,
minus-add,
condition-implies-le,
not-le-2,
false_wf,
decidable__le,
le-add-cancel,
zero-add,
add-zero,
add-associates,
add_functionality_wrt_le,
le_antisymmetry_iff,
sq_stable__le,
spread_cons_lemma,
product_subtype_list,
list-cases,
colength_wf_list,
nat_wf,
equal-wf-T-base,
valueall-type_wf,
less_than_wf,
ge_wf,
less_than_irreflexivity,
less_than_transitivity1,
nat_properties
Rules used in proof :
universeEquality,
callbyvalueReduce,
functionExtensionality,
instantiate,
intEquality,
minusEquality,
independent_pairFormation,
dependent_set_memberEquality,
addEquality,
imageElimination,
baseClosed,
imageMemberEquality,
applyLambdaEquality,
voidEquality,
productElimination,
hypothesis_subsumption,
promote_hyp,
unionElimination,
because_Cache,
applyEquality,
functionEquality,
cumulativity,
equalitySymmetry,
equalityTransitivity,
axiomEquality,
isect_memberEquality,
dependent_functionElimination,
lambdaEquality,
voidElimination,
independent_functionElimination,
independent_isectElimination,
natural_numberEquality,
intWeakElimination,
sqequalRule,
rename,
setElimination,
hypothesis,
hypothesisEquality,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
lambdaFormation,
thin,
cut,
introduction,
isect_memberFormation,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}[T,T':Type]. \mforall{}[l:T List]. \mforall{}[y:T']. \mforall{}[f:T' {}\mrightarrow{} T {}\mrightarrow{} T'].
eager-accum(x,a.f[x;a];y;l) \mmember{} T' supposing valueall-type(T')
Date html generated:
2018_05_21-PM-00_19_38
Last ObjectModification:
2018_05_15-PM-04_42_42
Theory : list_0
Home
Index