Nuprl Lemma : listp_wf
∀[A:Type]. (A List+ ∈ Type)
Proof
Definitions occuring in Statement : 
listp: A List+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
listp: A List+
, 
prop: ℙ
Lemmas referenced : 
list_wf, 
less_than_wf, 
length_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[A:Type].  (A  List\msupplus{}  \mmember{}  Type)
Date html generated:
2016_05_14-AM-06_34_56
Last ObjectModification:
2015_12_26-PM-00_35_16
Theory : list_0
Home
Index