Nuprl Lemma : listp_wf

[A:Type]. (A List+ ∈ Type)


Proof




Definitions occuring in Statement :  listp: List+ uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T listp: List+ prop:
Lemmas referenced :  list_wf less_than_wf length_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule setEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[A:Type].  (A  List\msupplus{}  \mmember{}  Type)



Date html generated: 2016_05_14-AM-06_34_56
Last ObjectModification: 2015_12_26-PM-00_35_16

Theory : list_0


Home Index